In Silico Three Dimensional Pharmacophore Models to Aid the Discovery and Design of New Antimalarial Agents

2006 ◽  
Vol 3 (4) ◽  
pp. 219-235 ◽  
Author(s):  
Apurba Bhattacharjee
Author(s):  
Apurba K. Bhattacharjee ◽  
Mark G. Hartell ◽  
Daniel A. Nichols ◽  
Rickey P. Hicks ◽  
John E. van Hamont ◽  
...  

2019 ◽  
Vol 19 (5) ◽  
pp. 319-336 ◽  
Author(s):  
Alexander V. Dmitriev ◽  
Alexey A. Lagunin ◽  
Dmitry А. Karasev ◽  
Anastasia V. Rudik ◽  
Pavel V. Pogodin ◽  
...  

Drug-drug interaction (DDI) is the phenomenon of alteration of the pharmacological activity of a drug(s) when another drug(s) is co-administered in cases of so-called polypharmacy. There are three types of DDIs: pharmacokinetic (PK), pharmacodynamic, and pharmaceutical. PK is the most frequent type of DDI, which often appears as a result of the inhibition or induction of drug-metabolising enzymes (DME). In this review, we summarise in silico methods that may be applied for the prediction of the inhibition or induction of DMEs and describe appropriate computational methods for DDI prediction, showing the current situation and perspectives of these approaches in medicinal and pharmaceutical chemistry. We review sources of information on DDI, which can be used in pharmaceutical investigations and medicinal practice and/or for the creation of computational models. The problem of the inaccuracy and redundancy of these data are discussed. We provide information on the state-of-the-art physiologically- based pharmacokinetic modelling (PBPK) approaches and DME-based in silico methods. In the section on ligand-based methods, we describe pharmacophore models, molecular field analysis, quantitative structure-activity relationships (QSAR), and similarity analysis applied to the prediction of DDI related to the inhibition or induction of DME. In conclusion, we discuss the problems of DDI severity assessment, mention factors that influence severity, and highlight the issues, perspectives and practical using of in silico methods.


2020 ◽  
Vol 17 (4) ◽  
pp. 342-351
Author(s):  
Sergio A. Durán-Pérez ◽  
José G. Rendón-Maldonado ◽  
Lucio de Jesús Hernandez-Diaz ◽  
Annete I. Apodaca-Medina ◽  
Maribel Jiménez-Edeza ◽  
...  

Background: The protozoan Giardia duodenalis, which causes giardiasis, is an intestinal parasite that commonly affects humans, mainly pre-school children. Although there are asymptomatic cases, the main clinical features are chronic and acute diarrhea, nausea, abdominal pain, and malabsorption syndrome. Little is currently known about the virulence of the parasite, but some cases of chronic gastrointestinal alterations post-infection have been reported even when the infection was asymptomatic, suggesting that the cathepsin L proteases of the parasite may be involved in the damage at the level of the gastrointestinal mucosa. Objective: The aim of this study was the in silico identification and characterization of extracellular cathepsin L proteases in the proteome of G. duodenalis. Methods: The NP_001903 sequence of cathepsin L protease from Homo sapienswas searched against the Giardia duodenalisproteome. The subcellular localization of Giardia duodenaliscathepsin L proteases was performed in the DeepLoc-1.0 server. The construction of a phylogenetic tree of the extracellular proteins was carried out using the Molecular Evolutionary Genetics Analysis software (MEGA X). The Robetta server was used for the construction of the three-dimensional models. The search for possible inhibitors of the extracellular cathepsin L proteases of Giardia duodenaliswas performed by entering the three-dimensional structures in the FINDSITEcomb drug discovery tool. Results: Based on the amino acid sequence of cathepsin L from Homo sapiens, 8 protein sequences were identified that have in their modular structure the Pept_C1A domain characteristic of cathepsins and two of these proteins (XP_001704423 and XP_001704424) are located extracellularly. Threedimensional models were designed for both extracellular proteins and several inhibitory ligands with a score greater than 0.9 were identified. In vitrostudies are required to corroborate if these two extracellular proteins play a role in the virulence of Giardia duodenalisand to discover ligands that may be useful as therapeutic targets that interfere in the mechanism of pathogenesis generated by the parasite. Conclusion: In silicoanalysis identified two proteins in the Giardia duodenalisprotein repertoire whose characteristics allowed them to be classified as cathepsin L proteases, which may be secreted into the extracellular medium to act as virulence factors. Three-dimensional models of both proteins allowed the identification of inhibitory ligands with a high score. The results suggest that administration of those compounds might be used to block the endopeptidase activity of the extracellular cathepsin L proteases, interfering with the mechanisms of pathogenesis of the protozoan parasite Giardia duodenalis.


2021 ◽  
Author(s):  
A.E. Manukyan ◽  
A.A. Hovhannisyan

ABSTRACTThe cyclooxygenase (COX) enzymes are tumor markers, the inhibition of which can be used in the prevention and therapy of carcinogenesis. It was found that COX-2 IS considered as targets for tumor inhibition. Aminopeptidase N (APN) is a type II membrane-bound metalloprotease associated with cancer, being identified as a cell marker on the surface of malignant myeloid cells and reached a high level of expression in progressive tumors. In anticancer therapy, plant compounds are considered that can inhibit their activity. Modeling of the COX-2 and APN enzymes was carried out on the basis of molecular models of three-dimensional structures from the PDB database [PDB ID: 5f19, 4fyq] RCSB. For docking analysis, 3D ligand models were created using MarvinSketch based on the PubChem database [CID: 5280343, 5281654]. In silico experiments, for the first time, revealed the possible interaction and inhibition of COX-2 and APN by quercetin and quercetin derivatives. Aspirin and Marimastat were taken to compare the results. Possible biological activities and possible side effects of the ligands have been identified.


2021 ◽  
pp. 105480
Author(s):  
Martina Pierri ◽  
Erica Gazzillo ◽  
Maria Giovanna Chini ◽  
Maria Grazia Ferraro ◽  
Marialuisa Piccolo ◽  
...  

2019 ◽  
Vol 177 ◽  
pp. 77-93 ◽  
Author(s):  
Rolando Alberto Rodríguez-Fonseca ◽  
Martiniano Bello ◽  
María Ángeles de los Muñoz-Fernández ◽  
José Luis Jiménez ◽  
Saúl Rojas-Hernández ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document