Synthesis of Sulfur Containing Colchicine Derivatives and their Biological Evaluation as Cytotoxic Agents

2014 ◽  
Vol 11 (3) ◽  
pp. 279-289 ◽  
Author(s):  
Joanna Kurek ◽  
Wladyslaw Boczon ◽  
Krzysztof Myszkowski ◽  
Marek Murias ◽  
Teresa Borowiak ◽  
...  
2019 ◽  
Vol 15 (2) ◽  
pp. 138-149
Author(s):  
Saleem Farooq ◽  
Javid A. Banday ◽  
Aashiq Hussain ◽  
Momina Nazir ◽  
Mushtaq A. Qurishi ◽  
...  

Background: Natural product, osthol has been found to have important biological and pharmacological roles particularly having inhibitory effect on multiple types of cancer. Objective: The unmet needs in cancer therapeutics make its derivatization an important and exciting field of research. Keeping this in view, a whole new series of diverse analogues of osthol (1) were synthesized. Method: All the newly synthesized compounds were made through modification in the lactone ring as well as in the side chain of the osthol molecule and were subjected to anti-proliferative screening through 3-(4,5-Dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) against four different human cancers of diverse origins viz. Colon (Colo-205), lung (A549), Leukemia (THP- 1) and breast (MCF-7) including SV40 transformed normal breast epithelial cell (fR-2). Results: Interestingly, among the tested molecules, most of the analogs displayed better antiproliferative activity than the parent Osthol 1. However, among all the tested analogs, compound 28 exhibited the best results against leukemia (THP1) cell line with IC50 of 5µM.Compound 28 induced potent apoptotic effects and G1 phase arrest in leukemia cancer cells (THP1). The population of apoptotic cells increased from 13.8% in negative control to 26.9% at 8μM concentration of 28. Compound 28 also induced a remarkable decrease in mitochondrial membrane potential (ΛΨm) leading to apoptosis of the cancer cells. Conclusion: A novel series of molecules derived from natural product osthol were synthesized, wherein compound 28 was found to be most effective against leukemia and with 10 fold less toxicity against normal cells. The compound induced cancer inhibition mainly through apoptosis and thus has a potential in cancer therapeutics.


2016 ◽  
Vol 66 ◽  
pp. 145-159 ◽  
Author(s):  
Pritam Thapa ◽  
Tara Man Kadayat ◽  
Seojeong Park ◽  
Somin Shin ◽  
Til Bahadur Thapa Magar ◽  
...  

Cells ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 216 ◽  
Author(s):  
Urszula Majcher ◽  
Greta Klejborowska ◽  
Magdalena Kaik ◽  
Ewa Maj ◽  
Joanna Wietrzyk ◽  
...  

Specific modifications of colchicine followed by synthesis of its analogues have been tested in vitro with the objective of lowering colchicine toxicity. Our previous studies have clearly shown the anticancer potential of double-modified colchicine derivatives in C-7 and C-10 positions. Here, a series of novel triple-modified colchicine derivatives is reported. They have been obtained following a four-step strategy. In vitro cytotoxicity of these compounds has been evaluated against four human tumor cell lines (A549, MCF-7, LoVo, and LoVo/DX). Additionally, the mode of binding of the synthesized compounds was evaluated in silico using molecular docking to a 3D structure of β-tubulin based on crystallographic data from the Protein Data Bank and homology methodology. Binding free energy estimates, binding poses, and MlogP values of the compounds were obtained. All triple-modified colchicine derivatives were shown to be active at nanomolar concentrations against three of the investigated cancer cell lines (A549, MCF-7, LoVo). Four of them also showed higher potency against tumor cells over normal cells as confirmed by their high selectivity index values. A vast majority of the synthesized derivatives exhibited several times higher cytotoxicity than colchicine, doxorubicin, and cisplatin.


2014 ◽  
Vol 80 ◽  
pp. 593-604 ◽  
Author(s):  
Jin-Mei Xu ◽  
En Zhang ◽  
Xiao-Jing Shi ◽  
Yan-Chao Wang ◽  
Bin Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document