Image Encryption Method Using New Concept of Compound Blood Transfusion Rule with Multiple Chaotic Maps

Author(s):  
Ranu Gupta ◽  
Rahul Pachauri ◽  
Ashutosh Kumar Singh

Introduction: With the advancement in internet technology, a large amount of information in the form of data and image is transferred from one end to the other. The information may be military, defense, medical, etc. which should be kept confidential by providing security. Objective: The aim of this article will be to provide security to the image. This is achieved by applying the image encryption method which converts the original information into an unreadable format. Methods: This work explores an efficient way of image encryption using a chaotic logistic function. A set of two chaotic logistic functions and 256 bit long external secret key are employed to enhance the security in the encrypted images. The initial condition of first logistic function has been obtained by providing the suitable weights to all bits of the secret key. The initial condition of second logistic function has been derived from the first chaotic logistic function. In this proposed algorithm, ten different operations are used to encrypt the pixel of an image. The outcome of the second logistic map decides the operation to be used in the encryption of the particular image pixel. Results: Various statistical parameters like NPCR, UACI and information entropy were calculated. Conclusion: Results show that the proposed algorithm provides an image encryption method with better security and efficiency for all real-time applications such as medical images.

Author(s):  
Ranu Gupta ◽  
Rahul Pachauri ◽  
Ashutosh K. Singh

This article explores an efficient way of image encryption using chaotic logistic function. A set of two chaotic logistic functions and a 256 bit long external secret key are employed to enhance the security in the encrypted images. The initial condition of first logistic function has been obtained by providing the suitable weights to all bits of the secret key. The initial condition of second logistic function has been derived from first chaotic logistic function. In this proposed algorithm, ten different operations are used to encrypt the pixel of an image. The outcome of the second logistic map decides the operation to be used in the encryption of the particular image pixel. Various statistical parameter comparisons show that the proposed algorithm provides an image encryption method with better security and efficiency for all real-time applications.


2019 ◽  
Vol 13 (4) ◽  
pp. 53-67 ◽  
Author(s):  
Ranu Gupta ◽  
Rahul Pachauri ◽  
Ashutosh K. Singh

This article explores an efficient way of image encryption using chaotic logistic function. A set of two chaotic logistic functions and a 256 bit long external secret key are employed to enhance the security in the encrypted images. The initial condition of first logistic function has been obtained by providing the suitable weights to all bits of the secret key. The initial condition of second logistic function has been derived from first chaotic logistic function. In this proposed algorithm, ten different operations are used to encrypt the pixel of an image. The outcome of the second logistic map decides the operation to be used in the encryption of the particular image pixel. Various statistical parameter comparisons show that the proposed algorithm provides an image encryption method with better security and efficiency for all real-time applications.


2012 ◽  
Vol 241-244 ◽  
pp. 2728-2731
Author(s):  
Yong Zhang

Some chaos-based image encryption schemes using plain-images independent secret code streams have weak encryption security and are vulnerable to chosen plaintext and chosen cipher-text attacks. This paper proposed a two-level secret key image encryption method, where the first-level secret key is the private symmetric secret key, and the second-level secret key is derived from both the first-level secret key and the plain image by iterating piecewise linear map and Logistic map. Even though the first-level key is identical, the different plain images will produce different second-level secret keys and different secret code streams. The results show that the proposed has high encryption speed, and also can effectively resist chosen/known plaintext attacks.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Shamsa Kanwal ◽  
Saba Inam ◽  
Omar Cheikhrouhou ◽  
Kinza Mahnoor ◽  
Atef Zaguia ◽  
...  

Due to the growing of the use of Internet and communication media, image encryption is rapidly increased. Image sharing through unsafe open channels is vulnerable for attacking and stealing. For protecting the images from attacks, encryption techniques are required. Recently, new and efficient chaos-based techniques have been suggested to develop secure image encryption. This study presents a novel image encryption framework based on integrating the chaotic maps and color codes. Three phases are involved in the proposed image encryption technique. Piecewise chaotic linear map (PWLCM) is used in the first phase for permuting the digital image. In the second phase, substitution is done using Hill cipher which is the mixing of color codes with the permuted image. The third phase is implemented by XORing, a sequence generated by the chaotic logistic map (CLM). The proposed approach enhances the diffusion ability of the image encryption making the encrypted images resistant to the statistical differential attacks. The results of several analyses such as information entropy, histogram correlation of adjacent pixels, unified average changing intensity (UACI), number of pixel change rate (NPCR), and peak signal-to-noise ratio (PSNR) guarantee the security and robustness of the proposed algorithm. The measurements show that the proposed algorithm is a noble overall solution for image encryption. Thorough comparison with other image encryption algorithms is also carried out.


2018 ◽  
Vol 11 (1) ◽  
pp. 15-25
Author(s):  
Jakub Oravec ◽  
Ján Turán ◽  
Ľuboš Ovseník

Abstract This paper proposes an image encryption algorithm which uses four scans of an image during the diffusion stage in order to achieve total diffusion between intensities of image pixels. The condition of total diffusion is fulfilled by a suitable combination of techniques of ciphertext chaining and plaintext related diffusion. The proposed encryption algorithm uses two stages which utilize chaotic logistic map for generation of pseudo-random sequences. The paper also briefly analyzes approaches described by other researchers and evaluates experimental results of the proposed solution by means of commonly used measures. Properties of our proposal regarding modifications of plain images prior to encryption or modifications of encrypted images prior to decryption are illustrated by two additional experiments. The obtained numeric results are compared with those achieved by other proposals and briefly discussed.


Author(s):  
Sabyasachi Pramanik ◽  
Ramkrishna Ghosh ◽  
Mangesh M. Ghonge ◽  
Vipul Narayan ◽  
Mudita Sinha ◽  
...  

In the information technology community, communication is a vital issue. And image transfer creates a major role in the communication of data through various insecure channels. Security concerns may forestall the direct sharing of information and how these different gatherings cooperatively direct data mining without penetrating information security presents a challenge. Cryptography includes changing over a message text into an unintelligible figure and steganography inserts message into a spread media and shroud its reality. Both these plans are successfully actualized in images. To facilitate a safer transfer of image, many cryptosystems have been proposed for the image encryption scheme. This chapter proposes an innovative image encryption method that is quicker than the current researches. The secret key is encrypted using an asymmetric cryptographic algorithm and it is embedded in the ciphered image using the LSB technique. Statistical analysis of the proposed approach shows that the researcher's approach is faster and has optimal accuracy.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Zhongpeng Wang ◽  
Shoufa Chen

This paper proposes a physical encryption scheme for discrete cosine transform (DCT) precoded OFDM-based visible light communication systems by employing chaos scrambling. In the proposed encryption scheme, the Logistic map is adopted for the chaos mapping. The chaos scrambling strategy can allocate the two scrambling sequences to the real (I) and imaginary (Q) parts of OFDM frames according to the initial condition, which enhance the confidentiality of the physical layer. The simulation experimental results prove the efficiency of the proposed encryption method for DCT precoded OFDM-based VLC systems. The experimental results show that the proposed security scheme can protect the DCT precoded OFDM-based VLC from eavesdropper, while keeping the advantage of the DCT precoding technique, which can reduce the PAPR and improve the BER performance of OFDM-based VLC.


Author(s):  
Bhagyashri I. Pandurangi R ◽  
Meenakshi R. Patil

A color image encryption algorithm based on chaotic maps is proposed in this paper. The algorithm is based on two bio-operations: crossover and mutation. To enhance the robustness against differential attacks, the mutated image is subjected to scrambling process operated on the pixel values of the image using a random sequence. Experimental results show that the proposed algorithm is capable of generating encrypted images with uniform distribution of the pixel values and very low correlation coefficients of adjacent pixels. It is very sensitive to any change in the secret key values. The results show that the algorithm is robust to statistical and differential attacks.


2019 ◽  
Vol 13 ◽  
pp. 174830261985347 ◽  
Author(s):  
Zhijuan Deng ◽  
Shaojun Zhong

In this article, we introduced a digital image encryption algorithm based on the chaotic mapping designed by Xiong et al. In their paper, the authors theoretically analyzed the algorithm and pointed out that the algorithm did not need to have the prior knowledge of the orbital distribution and one can select any chaotic model. In this way, the algorithm greatly expanded the cryptographic space and greatly reduced the number of iterations of the mapping. Since the algorithm has many characteristics, for instance, it is sensitive to the secret key, its key space is big, the pixel is well distributed after being encrypted, etc., the security of the encrypted images can be assured effectively. However, since the algorithm applied the image scrambling for encryption, and did not take the chosen-plaintext attacks into consideration, the algorithm is relatively weak in resisting the chosen-plaintext attacks. Therefore, we put forward a kind of image replacement method based on chaos, which can resist the chosen-plaintext attacks. And the experimental simulation proves that this algorithm not only has many characteristics, for instance, it is sensitive to the secret key, its key space is big, the pixel is well distributed after being encrypted, etc., but also can resist the chosen-plaintext attacks effectively. In the meanwhile, the algorithm is very sensitive to the small changes of the plaintexts, and its encrypted images will completely lose the features of the original ones.


2013 ◽  
Vol 284-287 ◽  
pp. 2992-2997 ◽  
Author(s):  
Xiao Wei Li ◽  
Dong Hwan Kim ◽  
Sung Jin Cho ◽  
Seok Tae Kim

Three dimensional (3-D) images encryption schemes can provide feasible and secure for images encryption due to the 3-D properties of images. In this paper, we present a novel 3-D images encryption algorithm by combining use of integral imaging (II) and maximum-length cellular automata (MLCA) as the secret key ciphering for 3D image encryption technique. In this proposed algorithm, a lenslet array first decomposes the 3-D object into 2-D elemental images (EIs) via the pick-up process of II. We encrypt the 2-D EIs with an encryption method based on linear and complemented MLCA. Decryption process is the opposite of operation encryption process: The 2-D EIs is recovered by the MLCA key, 3-D object is reconstructed by the recovered EIs via computational integral imaging (CII) reconstruction. To verify the usefulness of the proposed algorithm, we carry out the computational experiments and present the experimental results for various attacks. Experimental results show that the proposed algorithm can improve the performance of encryption against various attacks due to large key space in MLCA and 3-D characteristic of data redundancy.


Sign in / Sign up

Export Citation Format

Share Document