scholarly journals Analytic Study of a Novel Color Image Encryption Method Based on the Chaos System and Color Codes

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Shamsa Kanwal ◽  
Saba Inam ◽  
Omar Cheikhrouhou ◽  
Kinza Mahnoor ◽  
Atef Zaguia ◽  
...  

Due to the growing of the use of Internet and communication media, image encryption is rapidly increased. Image sharing through unsafe open channels is vulnerable for attacking and stealing. For protecting the images from attacks, encryption techniques are required. Recently, new and efficient chaos-based techniques have been suggested to develop secure image encryption. This study presents a novel image encryption framework based on integrating the chaotic maps and color codes. Three phases are involved in the proposed image encryption technique. Piecewise chaotic linear map (PWLCM) is used in the first phase for permuting the digital image. In the second phase, substitution is done using Hill cipher which is the mixing of color codes with the permuted image. The third phase is implemented by XORing, a sequence generated by the chaotic logistic map (CLM). The proposed approach enhances the diffusion ability of the image encryption making the encrypted images resistant to the statistical differential attacks. The results of several analyses such as information entropy, histogram correlation of adjacent pixels, unified average changing intensity (UACI), number of pixel change rate (NPCR), and peak signal-to-noise ratio (PSNR) guarantee the security and robustness of the proposed algorithm. The measurements show that the proposed algorithm is a noble overall solution for image encryption. Thorough comparison with other image encryption algorithms is also carried out.

2019 ◽  
Vol 29 (09) ◽  
pp. 1950115 ◽  
Author(s):  
Guangfeng Cheng ◽  
Chunhua Wang ◽  
Hua Chen

In recent years, scholars studied and proposed some secure color image encryption algorithms. However, the majority of the published algorithms encrypted red, green and blue (called [Formula: see text], [Formula: see text], [Formula: see text] for short) components independently. In the paper, we propose a color image encryption scheme based on hyperchaotic system and permutation-diffusion architecture. The encryption algorithm utilizes a block permutation which is realized by mixing [Formula: see text], [Formula: see text], [Formula: see text] components to strengthen the dependence of each component. Besides, it can reduce time consumption. Then, the key streams generated by the hyperchaotic system are exploited to diffuse the pixels, the three components affect each other again. And in the diffusion process, we can get two totally different encrypted images even though we change the last pixel because the [Formula: see text] component is diffused in reverse order. The experimental results reveal that our algorithm possesses better abilities of resisting statistical attacks and differential attacks, larger key space, closer information entropy to 8, and faster encryption speed compared with other chaos-based color image encryption algorithms.


Author(s):  
Bhagyashri I. Pandurangi R ◽  
Meenakshi R. Patil

A color image encryption algorithm based on chaotic maps is proposed in this paper. The algorithm is based on two bio-operations: crossover and mutation. To enhance the robustness against differential attacks, the mutated image is subjected to scrambling process operated on the pixel values of the image using a random sequence. Experimental results show that the proposed algorithm is capable of generating encrypted images with uniform distribution of the pixel values and very low correlation coefficients of adjacent pixels. It is very sensitive to any change in the secret key values. The results show that the algorithm is robust to statistical and differential attacks.


2019 ◽  
Vol 29 (1) ◽  
pp. 1202-1215 ◽  
Author(s):  
Rageed Hussein AL-Hashemy ◽  
Sadiq A. Mehdi

Abstract This article introduces a simple and effective new algorithm for image encryption using a chaotic system which is based on the magic squares. This novel 3D chaotic system is invoked to generate a random key to encrypt any color image. A number of chaotic keys equal to the size of the image are generated by this chaotic system and arranged into a matrix then divided into non-overlapped submatrices. The image to be encrypted is also divided into sub-images, and each sub-image is multiplied by a magic matrix to produce another set of matrices. The XOR operation is then used on the resultant two sets of matrices to produce the encrypted image. The strength of the encryption method is tested in two folds. The first fold is the security analysis which includes key space analysis and sensitivity analysis. In the second fold, statistical analysis was performed, which includes the correlation coefficients, information entropy, the histogram, and analysis of differential attacks. Finally, the time of encryption and decryption was computed and show very good results.


2021 ◽  
Vol 50 (1) ◽  
pp. 55-75
Author(s):  
K SundaraKrishnan ◽  
RAJA SP ◽  
JAISON B

The transmission of significant masses of sensitive and secret images over a public network is inevitable, and demands effective tools and technology to safeguard and conceal the data. In this paper, a symmetric multiple color image encryption technique is proposed by adopting a dual permutation and dual substitution framework. Firstly, the input images are combined into a large image and then segmented into many small and equal-sized pure-image elements. Secondly, using the elementary cellular automata Rule-30, these pure-image elements are permuted to obtain mixed-image elements. Thirdly, second-level permutation is undertaken on the mixed-image elements by applying zigzag pattern scanning. Fourthly, pixel values are substituted by employing the circular shift method; subsequently, second-level pixel substitution is realized through using chaotic random sequences from a 2D logistic map. Finally, the big encrypted image is segmented into smaller encrypted images. Additionally, the keys are calculated from the input images to attain input sensitivity. The efficiency of this method is quantified, based on the unified average changing intensity (UACI), information entropy, number of pixels change rate (NPCR), key sensitivity, key space, histogram, peak signal-to-noise ratio (PSNR) and correlation coefficient (CC) performance metrics. The outcome of the experiments and a comparative analysis with two similar methods indicate that the proposed method produced high security results.


Author(s):  
Ranu Gupta ◽  
Rahul Pachauri ◽  
Ashutosh K. Singh

This article explores an efficient way of image encryption using chaotic logistic function. A set of two chaotic logistic functions and a 256 bit long external secret key are employed to enhance the security in the encrypted images. The initial condition of first logistic function has been obtained by providing the suitable weights to all bits of the secret key. The initial condition of second logistic function has been derived from first chaotic logistic function. In this proposed algorithm, ten different operations are used to encrypt the pixel of an image. The outcome of the second logistic map decides the operation to be used in the encryption of the particular image pixel. Various statistical parameter comparisons show that the proposed algorithm provides an image encryption method with better security and efficiency for all real-time applications.


Author(s):  
Ranu Gupta ◽  
Rahul Pachauri ◽  
Ashutosh Kumar Singh

Introduction: With the advancement in internet technology, a large amount of information in the form of data and image is transferred from one end to the other. The information may be military, defense, medical, etc. which should be kept confidential by providing security. Objective: The aim of this article will be to provide security to the image. This is achieved by applying the image encryption method which converts the original information into an unreadable format. Methods: This work explores an efficient way of image encryption using a chaotic logistic function. A set of two chaotic logistic functions and 256 bit long external secret key are employed to enhance the security in the encrypted images. The initial condition of first logistic function has been obtained by providing the suitable weights to all bits of the secret key. The initial condition of second logistic function has been derived from the first chaotic logistic function. In this proposed algorithm, ten different operations are used to encrypt the pixel of an image. The outcome of the second logistic map decides the operation to be used in the encryption of the particular image pixel. Results: Various statistical parameters like NPCR, UACI and information entropy were calculated. Conclusion: Results show that the proposed algorithm provides an image encryption method with better security and efficiency for all real-time applications such as medical images.


2019 ◽  
Vol 13 (4) ◽  
pp. 53-67 ◽  
Author(s):  
Ranu Gupta ◽  
Rahul Pachauri ◽  
Ashutosh K. Singh

This article explores an efficient way of image encryption using chaotic logistic function. A set of two chaotic logistic functions and a 256 bit long external secret key are employed to enhance the security in the encrypted images. The initial condition of first logistic function has been obtained by providing the suitable weights to all bits of the secret key. The initial condition of second logistic function has been derived from first chaotic logistic function. In this proposed algorithm, ten different operations are used to encrypt the pixel of an image. The outcome of the second logistic map decides the operation to be used in the encryption of the particular image pixel. Various statistical parameter comparisons show that the proposed algorithm provides an image encryption method with better security and efficiency for all real-time applications.


2020 ◽  
Vol 38 (3B) ◽  
pp. 98-103
Author(s):  
Atyaf S. Hamad ◽  
Alaa K. Farhan

This research presents a method of image encryption that has been designed based on the algorithm of complete shuffling, transformation of substitution box, and predicated image crypto-system. This proposed algorithm presents extra confusion in the first phase because of including an S-box based on using substitution by AES algorithm in encryption and its inverse in Decryption. In the second phase, shifting and rotation were used based on secrete key in each channel depending on the result from the chaotic map, 2D logistic map and the output was processed and used for the encryption algorithm. It is known from earlier studies that simple encryption of images based on the scheme of shuffling is insecure in the face of chosen cipher text attacks. Later, an extended algorithm has been projected. This algorithm performs well against chosen cipher text attacks. In addition, the proposed approach was analyzed for NPCR, UACI (Unified Average Changing Intensity), and Entropy analysis for determining its strength.


2018 ◽  
Vol 11 (1) ◽  
pp. 15-25
Author(s):  
Jakub Oravec ◽  
Ján Turán ◽  
Ľuboš Ovseník

Abstract This paper proposes an image encryption algorithm which uses four scans of an image during the diffusion stage in order to achieve total diffusion between intensities of image pixels. The condition of total diffusion is fulfilled by a suitable combination of techniques of ciphertext chaining and plaintext related diffusion. The proposed encryption algorithm uses two stages which utilize chaotic logistic map for generation of pseudo-random sequences. The paper also briefly analyzes approaches described by other researchers and evaluates experimental results of the proposed solution by means of commonly used measures. Properties of our proposal regarding modifications of plain images prior to encryption or modifications of encrypted images prior to decryption are illustrated by two additional experiments. The obtained numeric results are compared with those achieved by other proposals and briefly discussed.


2019 ◽  
Vol 68 (11) ◽  
pp. 110502
Author(s):  
Si-Xing Xi ◽  
Na-Na Yu ◽  
Xiao-Lei Wang ◽  
Qiao-Fen Zhu ◽  
Zhao Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document