Regenerative potential of Stem cell-derived extracellular vesicles in spinal cord injury (SCI)

Author(s):  
Franklin J Herbert ◽  
Dhivya Bharathi ◽  
Sevanthy Suresh ◽  
Ernest David ◽  
Sanjay Kumar

: Spinal cord injury is a devastating condition that is critically challenging and progressive, needing immediate medical attention due to its complex pathophysiology and affecting the social status and economic burden. Stem cell therapy has been the emerging therapeutic trend to treat various diseases for decades. Mesenchymal stem cells pose more advantages over other stem cells in immune-modulation, immune evasiveness, self-renewal, multipotency, etc. Due to various issues in the recent past related to allogenic transplants, ethical concerns in obtaining tissues and adult cells, host immune response, GMP grade production and certification, cell-derived products or cell secretome have proven to be a promising approach and have been implicated in many studies and also in many clinical trials. Utilization of these human MSC-derived exosomes/extracellular vesicles in spinal cord injury has also been demonstrated in many pre-clinical animal models. It is now proven to be therapeutically more efficient and safer than cell therapy. This review focuses on employing human MSC derived EVs for SCI and continues to elucidate the recent advances and emerging EVs trends from other cell types. We discuss biomaterial-based synergistic intervention, mention mimetics and nanovesicles and finally touch upon safety concerns in EV therapy.

2012 ◽  
Vol 8 (3) ◽  
pp. 953-962 ◽  
Author(s):  
Mevci Ozdemir ◽  
Ayhan Attar ◽  
Isinsu Kuzu ◽  
Murat Ayten ◽  
Enver Ozgencil ◽  
...  

Biologicals ◽  
2017 ◽  
Vol 50 ◽  
pp. 73-80 ◽  
Author(s):  
Mostafa Shahrezaie ◽  
Reyhaneh Nassiri Mansour ◽  
Bahare Nazari ◽  
Hadi Hassannia ◽  
Fatemeh Hosseini ◽  
...  

2021 ◽  
Vol 30 ◽  
pp. 096368972198926
Author(s):  
Liyi Huang ◽  
Chenying Fu ◽  
Feng Xiong ◽  
Chengqi He ◽  
Quan Wei

Traumatic spinal cord injury (SCI) results in direct and indirect damage to neural tissues, which results in motor and sensory dysfunction, dystonia, and pathological reflex that ultimately lead to paraplegia or tetraplegia. A loss of cells, axon regeneration failure, and time-sensitive pathophysiology make tissue repair difficult. Despite various medical developments, there are currently no effective regenerative treatments. Stem cell therapy is a promising treatment for SCI due to its multiple targets and reactivity benefits. The present review focuses on SCI stem cell therapy, including bone marrow mesenchymal stem cells, umbilical mesenchymal stem cells, adipose-derived mesenchymal stem cells, neural stem cells, neural progenitor cells, embryonic stem cells, induced pluripotent stem cells, and extracellular vesicles. Each cell type targets certain features of SCI pathology and shows therapeutic effects via cell replacement, nutritional support, scaffolds, and immunomodulation mechanisms. However, many preclinical studies and a growing number of clinical trials found that single-cell treatments had only limited benefits for SCI. SCI damage is multifaceted, and there is a growing consensus that a combined treatment is needed.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3334
Author(s):  
Maria Martin-Lopez ◽  
Beatriz Fernandez-Muñoz ◽  
Sebastian Canovas

Spinal cord injury (SCI) is a devastating condition of the central nervous system that strongly reduces the patient’s quality of life and has large financial costs for the healthcare system. Cell therapy has shown considerable therapeutic potential for SCI treatment in different animal models. Although many different cell types have been investigated with the goal of promoting repair and recovery from injury, stem cells appear to be the most promising. Here, we review the experimental approaches that have been carried out with pluripotent stem cells, a cell type that, due to its inherent plasticity, self-renewal, and differentiation potential, represents an attractive source for the development of new cell therapies for SCI. We will focus on several key observations that illustrate the potential of cell therapy for SCI, and we will attempt to draw some conclusions from the studies performed to date.


2020 ◽  
Vol 15 (4) ◽  
pp. 321-331 ◽  
Author(s):  
Zhe Gong ◽  
Kaishun Xia ◽  
Ankai Xu ◽  
Chao Yu ◽  
Chenggui Wang ◽  
...  

Spinal Cord Injury (SCI) causes irreversible functional loss of the affected population. The incidence of SCI keeps increasing, resulting in huge burden on the society. The pathogenesis of SCI involves neuron death and exotic reaction, which could impede neuron regeneration. In clinic, the limited regenerative capacity of endogenous cells after SCI is a major problem. Recent studies have demonstrated that a variety of stem cells such as induced Pluripotent Stem Cells (iPSCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cells (MSCs) and Neural Progenitor Cells (NPCs) /Neural Stem Cells (NSCs) have therapeutic potential for SCI. However, the efficacy and safety of these stem cellbased therapy for SCI remain controversial. In this review, we introduce the pathogenesis of SCI, summarize the current status of the application of these stem cells in SCI repair, and discuss possible mechanisms responsible for functional recovery of SCI after stem cell transplantation. Finally, we highlight several areas for further exploitation of stem cells as a promising regenerative therapy of SCI.


Stem Cells ◽  
2012 ◽  
Vol 31 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Feng Tao ◽  
Qun Li ◽  
Su Liu ◽  
Haiying Wu ◽  
John Skinner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document