Glipizide Combined with ANP Suppresses Breast Cancer Growth and Metastasis by Inhibiting Angiogenesis through VEGF/VEGFR2 Signaling

Author(s):  
Guanquan Mao ◽  
Shuting Zheng ◽  
Jinlian Li ◽  
Xiaohua Liu ◽  
Qin Zhou ◽  
...  

Background: Breast cancer is one of the most common cancers worldwide among women, and angiogenesis has an important effect on its growth and metastasis. Glipizide, which is a widely used drug for type 2 diabetes mellitus, has been reported to inhibit tumor growth and metastasis by upregulating the expression of natriuretic peptide receptor A (NPRA). Atrial natriuretic peptide (ANP), the receptor of NPRA, plays an important role in angiogenesis. The purpose of this study was to explore the effect of glipizide combined with ANP on breast cancer growth and metastasis. Methods: To investigate the effect of glipizide combined with ANP on breast cancer, glipizide, ANP or glipizide combined with ANP was intraperitoneally injected into MMTV-PyMT mice. To explore whether the anticancer efficacy of glipizide combined with ANP was correlated with angiogenesis, a tube formation assay was performed. Results: Glipizide combined with ANP was found to inhibit breast cancer growth and metastasis in MMTV-PyMT mice, which spontaneously develop breast cancer. Furthermore, the inhibitory effect of ANP combined with glipizide was better than that of glipizide alone. ANP combined with glipizide significantly inhibited tube formation of human umbilical vein endothelial cells (HUVECs) by suppressing vascular endothelial growth factor (VEGF)/VEGFR2 (vascular endothelial growth factor receptor 2) signaling. Conclusions: These results demonstrate that glipizide combined with ANP has a greater potential than glipizide alone to be repurposed as effective agents for the treatment of breast cancer by targeting tumor-induced angiogenesis.

2018 ◽  
Vol 96 (6) ◽  
pp. 761-768 ◽  
Author(s):  
Sen Hong ◽  
Si Chen ◽  
Xu Wang ◽  
Di Sun ◽  
Zhenkun Yan ◽  
...  

ATPase family AAA domain-containing protein 2 (ATAD2) is involved in various types of cancers, including colorectal cancer. This study aimed to determine the role of ATAD2 in angiogenesis in colorectal cancer. Here, we downregulated ATAD2 expression in HCT116 and SW480 cells, and collected the conditioned medium (CM) from control and ATAD2-silenced cells. The effect of CM on human umbilical vein endothelial cells (HUVEC) was evaluated by using CCK-8, wound healing, tube formation, Western blot, and dual-luciferase reporter assays. Our results showed that the proliferation, migration, and tube formation of HUVEC were reduced in presence of ATAD2-silenced CM, and the levels of phosphorylated vascular endothelial growth factor receptor 2 (P-VEGFR2), CD31, and CD34 were downregulated. Mechanism studies showed that ATAD2 silencing regulated the expression of vascular endothelial growth factor A (VEGFA) and miR-520a. Moreover, we found that miR-520a could bind to ATAD2, and its inhibitor partly reversed the alterations in HUVEC induced by CM from ATAD2-silenced cells. In addition, we demonstrated that miR-520a directly bound to 3′-UTR of VEGFA and inhibited its expression. Collectively, our results indicate that ATAD2 inhibition suppresses VEGFA secretion by increasing miR-520a levels. Our study suggests ATAD2 as a potential therapeutic target for angiogenesis in colorectal cancer.


2015 ◽  
Vol 113 (02) ◽  
pp. 329-337 ◽  
Author(s):  
Peter W. Hewett ◽  
Takeshi Fujisawa ◽  
Samir Sissaoui ◽  
Meng Cai ◽  
Geraldine Gueron ◽  
...  

SummaryCarbon monoxide (CO) is a gaseous autacoid known to positively regulate vascular tone; however, its role in angiogenesis is unknown. The aim of this study was to investigate the effect of CO on angiogenesis and vascular endothelial growth factor (VEGF) receptor-2 phosphorylation. Human umbilical vein endothelial cells (HUVECs) were cultured on growth factor-reduced Matrigel and treated with a CO-releasing molecule (CORM-2) or exposed to CO gas (250 ppm). Here, we report the surprising finding that exposure to CO inhibits vascular endothelial growth factor (VEGF)-induced endothelial cell actin reorganisation, cell proliferation, migration and capillary-like tube formation. Similarly, CO suppressed VEGF-mediated phosphorylation of VEGFR-2 at tyrosine residue 1175 and 1214 and basic fibroblast growth factor- (FGF-2) and VEGF-mediated Akt phosphorylation. Consistent with these data, mice exposed to 250 ppm CO (1h/day for 14 days) exhibited a marked decrease in FGF-2-induced Matrigel plug angiogenesis (p<0.05). These data establish a new biological function for CO in angiogenesis and point to a potential therapeutic use for CO as an anti-angiogenic agent in tumour suppression.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 358 ◽  
Author(s):  
Jun Yeon Park ◽  
Young Seok Ji ◽  
Hucheng Zhu ◽  
Yonghui Zhang ◽  
Do Hwi Park ◽  
...  

Cytochalasans are a group of structurally diverse fungal polyketide-amino acid hybrid metabolites that exhibit diverse biological functions. Asperchalasine A was identified and isolated from an extract of the marine-derived fungus, Aspergillus. Asperchalasine A is a cytochalasan dimer which consists of two cytochalasan molecules connected by an epicoccine. This study investigated the potential antiangiogenic effects of Aspergillus extract and asperchalasine A, which significantly inhibited cell adhesion and tube formation in human umbilical vein endothelial cells (HUVECs). Aspergillus extract and asperchalasine A decreased the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR)-2 mRNA expression in a concentration-dependent manner. In addition, Aspergillus extract and asperchalasine A inhibited angiogenesis via downregulation of VEGF, p-p38, p-extracellular signal-regulated protein kinase (ERK), p-VEGFR-2, and p-Akt signaling pathways. Moreover, Aspergillus extract and asperchalasine A significantly inhibited the amount of blood vessel formation in fertilized chicken eggs using a chorioallantoic membrane assay. Our results provide experimental evidence of this novel biological activity of the potential antiangiogenic substances, Aspergillus extract, and asperchalasine A. This study also suggests that Aspergillus extract and its active component asperchalasine A are excellent candidates as adjuvant therapeutic substances for cancer prevention and treatment.


Sign in / Sign up

Export Citation Format

Share Document