scholarly journals Measurement of the Bio-Mechanical Properties of Two Different Feeder Layer Cells

2021 ◽  
Vol 15 (1) ◽  
pp. 12-18
Author(s):  
S. Romanazzo ◽  
K. Uesugi ◽  
A. Taniguchi ◽  
G. Forte ◽  
K. Morishima

Introduction: We here present our findings on 2 types of feeder layers, one composed of mouse embryonic fibroblasts (MEF) and the second one of mouse skeletal myoblasts (C2Cl2) feeder cells. Methods: The 2 feeder layers present a dramatic variance of intrinsic stiffness (142.68 ± 17.21 KPa and 45.78 ± 9.81 KPa, respectively). Results and Conclusion: This information could be used for a better understanding of cells and cell microenvironment mechano-physical characteristics that are influencing stem cell commitment, in order to develop a suitable engineered tissue for cardiac and skeletal muscle repair and a bio-actuator.

Reproduction ◽  
2004 ◽  
Vol 128 (6) ◽  
pp. 727-735 ◽  
Author(s):  
Jung Bok Lee ◽  
Ji Min Song ◽  
Jeoung Eun Lee ◽  
Jong Hyuk Park ◽  
Sun Jong Kim ◽  
...  

Mouse embryonic fibroblasts (MEFs) have been previously used as feeder cells to support the growth of human embryonic stem cells (hESCs). In this study, human adult uterine endometrial cells (hUECs), human adult breast parenchymal cells (hBPCs) and embryonic fibroblasts (hEFs) were tested as feeder cells for supporting the growth of hESCs to prevent the possibility of contamination from animal feeder cells. Cultured hUECs, hBPCs and hEFs were mitotically inactivated and then plated. hESCs (Miz-hES1, NIH registered) initially established on mouse feeder layers were transferred onto each human feeder layer and split every 5 days. The morphology, expression of specific markers and differentiation capacity of hESCs adapted on each human feeder layer were examined. On hUEC, hBPC and hEF feeder layers, hESCs proliferated for more than 90, 50 and 80 passages respectively. Human feeder-based hESCs were positive for stage-specific embryonic antigen (SSEA)-3 and -4, and Apase; they also showed similar differentiation capacity to MEF-based hESCs, as assessed by the formation of teratomas and expression of tissue-specific markers. However, hESCs cultured on hUEC and hEF feeders were slightly thinner and flatter than MEF- or hBPC-based hESCs. Our results suggest that, like MEF feeder layers, human feeder layers can support the proliferation of hESCs without differentiation. Human feeder cells have the advantage of supporting more passages than when MEFs are used as feeder cells, because hESCs can be uniformly maintained in the undifferentiated stage until they pass through senescence. hESCs established and/or maintained under stable xeno-free culture conditions will be helpful to cell-based therapy.


2020 ◽  
Vol 32 (2) ◽  
pp. 243
Author(s):  
N. Gupta ◽  
K. Polkoff ◽  
J. Piedrahita

Currently, the standard for treatment of full-thickness skin wounds is skin grafts or bioengineered skin substitutes; however, this method is limited by the amount of intact donor skin and lack of follicles and architecture. Thus, a protocol is needed for the expansion and differentiation of adult epidermal and hair follicle stem cells for use in scaffold mediated tissue engineering. Recently, we developed a transgenic porcine model in which H2B-GFP is under the control of the LGR5 promoter. LGR5 is an established marker of stem cells, meaning this model can be used to track the development and behaviour of these cells. The focus of this project was to create a novel culture method for the maintenance and expansion of LGR5+ epidermal adult stem cells utilising the green fluorescent protein (GFP) tag. Single cell epidermal stem cells were isolated from porcine skin using dispase II (10mgmL−1; Sigma) and trypsin (0.05%; Corning). Porcine fetal fibroblasts (PFF) or mouse embryonic fibroblasts (MEF) were grown to 95% confluence in a 6-well plate. Feeder layer cells were mitotically inactivated by incubation with mitomycin C (Sigma Aldrich, 10μgmL−1). Three different media were tested: basal medium [Dulbecco's modified Eagle's medium (DMEM), penicillin/streptomycin, Corning; Ham's F12, ThermoFisher; fetal bovine serum, Gemini Bio-Products], basal media + 5-azacytidine (Sigma Aldrich) and CHIR99021 (Tocris), or basal media + keratinocyte growth supplements (transferrin, hydrocortisone, T3, adenine, insulin, cholera toxin; Sigma Aldrich, epidermal growth factor; R&D Systems). Epidermal cells were plated in each medium for both PFF and MEF feeder layers. Experiments were performed in technical duplicates and replicated 3 times. On Day 9, total numbers of colonies in each well were counted and number of GFP-positive cells were quantified using ImageJ (National Institutes of Health). Results in Table 1 show that overall, the MEF feeder layer was able to support a higher rate of growth (P<0.05) and maintain the LGR5+ lineage at a higher proportion under all of the experimental conditions (P<0.05). In the growth-supplemented media, MEFs had fewer colonies than PFFs, but MEF colonies were, on average, 2.5 times larger (P<0.05). Conditions containing 5-aza and CHIR were the only conditions to maintain the LGR5+ lineage on the feeder layer. Statistically significant differences (P<0.05) were determined using two-way ANOVA, followed by Tukey's HSD test. Next, LGR5+ cells will be plated in media containing additional growth factors to stimulate expansion, while using CHIR and 5-aza to maintain the LGR5+ lineage. This protocol could be used in scaffolds to create three-dimensional growth of skin invitro and lead to better grafts for burn victims. Table 1.Growth of LGR5+ cells in different media including 5-azacytidine (5-aza), CHIR 99021 (CHIR), and keratinocyte growth supplements Group1 Basal medium (BM) BM + 5-aza+ CHIR BM + growth supplements No. of colonies/well MEF 127.7±40.8AB 189.3±16.9A 87.3±14.6B PFF 65.0±14.1A 83.3±17.0AB 148±33.7B Average no. of GFP+ cells per frame MEF 0.5±0.8B 65.7±18.4A 1.8±1.7B PFF 0.9±1.0B 22.6±4.5A 0.3±0.6B A,BValues within rows with different superscripts differ (P ≤ 0.05). 1MEF=mouse embryonic fibroblasts; PFF=porcine fetal fibroblasts.


2015 ◽  
Vol 68 (4) ◽  
pp. 1603-1614 ◽  
Author(s):  
Guangming Jiang ◽  
Xiaoju Wan ◽  
Ming Wang ◽  
Jianhua Zhou ◽  
Jian Pan ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e84062 ◽  
Author(s):  
Yu-Cheng Tu ◽  
Duen-Yi Huang ◽  
Shine-Gwo Shiah ◽  
Jang-Shiun Wang ◽  
Wan-Wan Lin

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1534
Author(s):  
Krystyna Żyżyńska-Galeńska ◽  
Jolanta Karasiewicz ◽  
Agnieszka Bernat

We would like to address the issues raised by Pierre Savatier in “Introduction of Mouse Embryonic Fibroblasts into Early Embryos Causes Reprogramming and (Con)Fusion” [...]


2008 ◽  
Vol 134 (4) ◽  
pp. A-86
Author(s):  
Engda G. Hagos ◽  
Amr Ghaleb ◽  
W Brian Dalton ◽  
Jonathan P. Katz ◽  
Klaus H. Kaestner ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 772
Author(s):  
Pierre Savatier

The reprogramming of somatic cell nuclei to achieve pluripotency is one of the most important biological discoveries of the last few decades [...]


Sign in / Sign up

Export Citation Format

Share Document