The Open Biotechnology Journal
Latest Publications


TOTAL DOCUMENTS

301
(FIVE YEARS 56)

H-INDEX

13
(FIVE YEARS 2)

Published By Bentham Science

1874-0707

2021 ◽  
Vol 15 (1) ◽  
pp. 173-182
Author(s):  
Garima Gupta ◽  
Anjuman Gul Memon ◽  
Brijesh Pandey ◽  
Mohd Sajid Khan ◽  
Mohammed Shariq Iqbal ◽  
...  

Background: Nigella sativa (NS), an herbaceous medicinal plant recognized for its diverse beneficial applications as a spice and traditional medicine. Objective: The present study was targeted to explore the antioxidant potential of Nigella sativa in response to colchicine-induced mutation. The stress condition brought due to mutation may affect the medicinal value (anti-inflammatory activity) of the plant. Method: Nigella sativa seeds were imperiled to colchicine treatment at various concentrations viz. 0.00625, 0.0125, 0.025, 0.05 and 0.1% subjected for analysis. Result: The colchicine treated plant (polyploid/ mutant) at 0.025% concentrations showed significant variation at morpho-physiological and biochemical level with respect to control (p value < 0.05). At the morphological level, the plant showed enlargement of shoot length (33.760±2.295mm), root length (13.546±1.535 mm), and leaf area (22.836±1.524 mm2). The analysis of seeds showed enhanced seeds per pod (49.333±4.163), weight of seeds (2.810±0.010g), length (3.133±0.089mm), and width (1.123±0.044mm) when compared with control. The physiological parameters also showed significant enhancement for stomatal index (35.456±4.751%), chlorophyll A (9.053±0.865 µg/gfw), chlorophyll B (4.990±0.763 µg/gfw), and total carotene content (773.190±5.906 µg/gfw). However, the fresh weight/ dry weight ratio (10.738±3.031) was found to be deprived. Furthermore, biochemical parameters viz. total flavonoid (seeds 1.973±0.134; plant 1.703 ± 0.064 mg eqv QE/g of tissue), total phenolic (seeds 15.690±1.495; plant 8.220±0.070 mg eqv GA/g of tissue), total carotene (seeds nil; plant 773.190±5.906 µg/gfw), and total antioxidant (seeds 0.445±0.102; plant 0.386±0.010 mM eqv AA/g tissue) were significantly elevated at 0.025% of colchicine treatment. When the in vitro anti-inflammatory activity was targeted, a significant escalation was observed for inhibition of albumin denaturation (97.466±2.835%), proteinase inhibitory activity (62.290±6.475%), heat-induced hemolysis (89.873±3.533%), hypotonicity induced hemolysis (92.572±3.527%), anti-lipoxygenase activity (96.010±3.098%), and cyclooxygenase inhibitory activity (68.296±3.920%) at 500µg/mL concentration of extract. Conclusion: Thus, it can be concluded that 0.025% of colchicine can induce significant (p value < 0.05) mutation in the Nigella sativa plant, which may lead to alterations at morpho-physiological and biochemical levels. Such treatment induces stress in the plant and leads to elevated antioxidant levels. This in turn elevates the therapeutic potential of the plant. Hence, our study is a novel and open-ended finding to explore various other medical properties of the plant with respect to colchicine-induced mutation.


2021 ◽  
Vol 15 (1) ◽  
pp. 183-189
Author(s):  
Miluska Cisneros-Yupanqui ◽  
Anna Lante ◽  
Corrado Rizzi

Background: The by-products of red chicory leaves are a valuable source of bioactive compounds that can be exploited in the development of functional foods. Objective: This work aimed to combine healthy properties of red chicory by-products with other ingredients in the formulation of a functional jam, which is easy and safe to swallow, especially for people suffering from dysphagia. Methods: The physicochemical parameters, as well as the total polyphenols content (TPC), was assessed in the obtained product. Results: The TPC (549.44 mg GAE/100 g) was higher than the values reported in other jams, and it remained stable along with the colour during six weeks of storage. Within the carbohydrates, 0.4% of the prebiotic fibre inulin has been detected, suggesting that this jam formulation is a promising delivery system of phenols and fibre. From the sensorial point of view, the functional jam obtained an overall good acceptability judgment. The bitterness of the red chicory is persistent, which helps people with dysphagia swallow more easily. Conclusion: The functional jam, based on chicory by-products, could be a good source of bioactive compounds, which are helpful even in the disabled subjects’ diet.


2021 ◽  
Vol 15 (1) ◽  
pp. 164-172
Author(s):  
Peyman Ebrahimi ◽  
Anna Lante

Polyphenols are the most prominent natural antioxidants found numerously in nature. They are secondary metabolites recognized for having high health benefits for consumers, even if the exploitation of these remarkable natural compounds is still a challenge. Moreover, there is a dilemma over the nutritional value of polyphenols. Hence, this paper seeks to review the classification, sources, anti-browning effect, antioxidant activity, nutritional property and anti-disease effect of polyphenols for better understanding the issues which need to be addressed in the valorization of these natural compounds.


2021 ◽  
Vol 15 (1) ◽  
pp. 71-81
Author(s):  
Ashish Bhatt ◽  
Darshankumar Prajapati ◽  
Akshaya Gupte

Nitriles are organic compounds consisting of −C≡N group. They are frequently known to occur in nature and as intermediate by-products and waste products of various chemical, pharmaceutical, and agricultural industries. They are also found in fruit pits, cabbage, cauliflower, and sprouts, which are released upon hydrolysis. Nitrile converting enzymes like nitrilases have been extracted from microorganisms and plants. Nitrilase-mediated biocatalysis reactions have continuously aroused widespread interest to scientists and entrepreneurs in organic synthesis. Nitrile converting biocatalysts (Nitrilases) are now of substantial industrial interest from the perspective of treating toxic nitrile and cyanide-containing compounds. Nitrile degrading enzymes generally consist of nitrilases and amidases. The aim of the current review is to summarize the recent advancements on regioselective nitrilases concerning their fundamental researches and their application in the synthesis of series of high-value fine chemicals and pharmaceuticals. The present review also focuses on the utility of nitrile converting enzyme, sources, properties, classification, structure, and applications as well.


2021 ◽  
Vol 15 (1) ◽  
pp. 97-108
Author(s):  
Ashwini Rane ◽  
Sanket J. Joshi

Dyes are one of the most widely used chemical substances in day-to-day life, including in different industries. Dye manufacturers, as well as users, are experiencing great difficulty in complying with stringent regulations on wastewater containing dyes and derivatives. Most of the industries still use age-old technology and machinery and thus find it difficult to cope with the change in the scenario of current stringent environmental regulations on disposable limits, which are improvised by pollution control boards. The inherent difficulties because of technical inadequacies during dyeing result in a large amount of dyestuff getting directly lost to the industrial effluents. Synthetic dyes are quite stable recalcitrant compounds. Henceforth, the release of dyes poses an ecotoxic hazard and potential danger of bioaccumulation, eventually affecting flora and fauna. Huge quantities of water consumption generate large volumes of highly contaminated effluents. Conventional treatment processes have limitations in the color removal from wastewater. Although physico-chemical techniques are practiced, it still suffers from the ‘economy-to-scale of application’ paradigm and generation of polluting and toxic byproducts, posing disposal problems. In contrast, biological processes involving microbes, plants, or their products (such as enzymes) are touted as alternate cost-effective methods for decolorization and degradation of such synthetic dyes, albeit with limited full-scale successful applications. Biodegradation of such xenobiotics has been the topic of research for over two decades, with limited success because of the production of toxic secondary metabolites and byproducts. This review paper is an effort towards discussing the importance of biodecolorization and biodegradation of dyes, with emphasis on some recent updates such as immobilization techniques and in-silico modelling methods and future possibilities.


2021 ◽  
Vol 15 (1) ◽  
pp. 119-130
Author(s):  
Muhammad Bello Usman ◽  
Kanu Priya ◽  
Soumya Pandit ◽  
Piyush Kumar Gupta ◽  
Sharad Agrawal ◽  
...  

The drastic increase in pesticide applications makes human exposure inevitable either through environment or occupation. Pesticide toxicity causes many adverse health effects through a number of pathways leading to DNA damage, mutations and cancers. Nevertheless, there is heterogeneity in the degree of toxicity among individuals due to the influence of genetic polymorphisms on xenobiotic metabolizing enzymes (XMEs) that modulate the biological process. Thus, study of the most common polymorphic genes coding for the enzymes involved in pesticide metabolism (such as cytochrome P450, Glutathione S-transferases, N-acetyltransferase and paraoxonase) may help determine individual’s susceptibility to pesticide toxicity. In this review, we give an overview of some recent developments in the field of genetic polymorphism and pesticide-related DNA damage, including probable biomarkers that may uncover genome susceptibility to pesticide toxicity. We have tried to create a connection between DNA polymorphism and cancer onslaught globally. It is envisaged that knowledge on this line would improve our understanding of facilitating the association between genotype and phenotype in cancer biology.


2021 ◽  
Vol 15 (1) ◽  
pp. 131-141
Author(s):  
V. Venkatramanan ◽  
Shachi Shah ◽  
Ram Prasad

Increasing demand for renewable energy in the backdrop of global change calls for waste valorization and circular economy strategies. Public health concerns and demand for clean energy provide impetus to the development of wastewater based MFC. Wastewater treatment and simultaneous generation of bioelectricity offer a myriad of environmental benefits. Nevertheless, it is pertinent to know the challenges with the microbial fuel cell (MFC) technology to upscale the wastewater based MFC. This paper attempts to critically analyse the processes, application, challenges and opportunities of wastewater based MFCs. A literature survey was conducted to find out the advances in the field of wastewater based MFCs and the focus was to decipher the challenges to the implementation of wastewater based MFCs. Recent developments in MFC technology have improved the power output and studies show that a diverse group of organic-rich wastewater can be treated with MFCs. The developments include improvements in MFC configuration, development of biocatalysts and biocathode, anodic biofilm formation, microbial community interactions, and progress in the organic and pollutant removal. Nevertheless, the MFC technology is replete with challenges about the organic removal rate, power density, electrode performance limiting factors, economic viability, high initial and maintenance cost and difficulty to maintain the exoelectrogens activity in a complex wastewater environment. Opportunities exist in scaling up of MFCs, integration with other wastewater treatment methods and measures to minimise the operating costs. MFCs have the potential to increase the resilience capacity of the sustainable wastewater treatment plant.


2021 ◽  
Vol 15 (1) ◽  
pp. 46-58
Author(s):  
Aneta Popova ◽  
Dasha Mihaylova ◽  
Alexander Spasov

In the era of air pollutants, respiratory diseases are a very common diagnosis in children, adolescents, and adults. Disorders of the respiratory system can affect both upper and lower respiratory system, and cause an immense worldwide health, economical and psychological burden. Considerable attention is drawn to the use of plant-based products for the prevention and cure of health challenges, with respect of their eco-friendliness and very few side effects. Exposure to nature and active plant interaction is considered beneficial to physical and mental health. Plant-based drugs primarily target the immune and cardiovascular systems. Biologically active substances with different value can be identified from both terrestrial or marine botanicals, whose therapeutic abilities are an efficient control of an array of diseases. In view of the potential of plant agents to positively influence respiratory diseases, this review will provide the reader with recent objective findings in the field of plant therapy and pharmaceutical agents and their ability to alter the physical and psychological complications of airborne diseases.


2021 ◽  
Vol 15 (1) ◽  
pp. 59-67
Author(s):  
Mandefro Tilahun ◽  
Wondwosen Tena ◽  
Bizuayehu Desta

Background: Onion is one of the most important crops widely cultivated throughout the world, including Ethiopia. The production of onion is mainly affected by the inadequate application of inorganic fertilizer types and rates. Objective: A field experiment was conducted to evaluate the effect of nitrogen and sulfur fertilizers on the growth, yield, quality, and nutrient uptake of onion at Shewa Robit in 2018/19 under irrigation. Methods: The experiment consisted of four nitrogen rates (100, 150, 200, and 250 kg N /ha) and five sulfur rates (0, 15, 30, 45, and 60kg S/ha). The treatments were laid out in a factorial arrangement with three replications using randomized complete block design (RCBD). Bombay Red was used as a testing onion variety. Results: The interaction effect of nitrogen and sulfur significantly increased plant height, leaf length, leaf diameter, leaf area index, neck diameter, shoot dry weight, bulb fresh weight and bulb dry weight, percent dry matter content, yield, and quality parameters. The application of 200kg N/ha and 45 kg S/ha resulted in the highest yield (42.6 t ha-1), the average weight of bulb (193.6g), and a marketable bulb (99.8%). The highest N uptake (243.3 kg ha-1) and S uptake (31.9kg ha-1) were obtained by the combined application of 200 kgN/ha and 45kg S/ha. Conclusion: The application of 200 kgN/ha and 45kgS/ha can be recommended for high yield and quality onion production in the study area.


2021 ◽  
Vol 15 (1) ◽  
pp. 157-163
Author(s):  
Aigerim Turgimbayeva ◽  
Assel Issabekova ◽  
Assylbek Zhylkibayev ◽  
Saule Eskendirova

Breast cancer is a leading malignant disease in women worldwide, although its pathology is visually localised. Currently, it has been proven that the parameters of molecular genetic biomarkers, including oncoprotein HER2, proliferation markers Ki-67, oestrogen receptors ER, and progesterone receptors PgR, are associated with breast carcinogenesis and are a reflection of the biological aggression of the tumour. The significance of these biomarkers in signalling pathways and genetic mechanisms of carcinogenesis has been described, as well as the relationship between the expression levels of each biomarker and the tumour response to appropriate therapy. The primary antibody that imparts specificity to IHC is based on the monoclonal antibodies (mAbs) as the main immunoreagent that enables reliable identification of breast cancer cells. The most commonly used antibodies to molecular biomarkers for IHC were determined in accordance with indicators of laboratory use and efficiency (pass rate) of HER2, Ki-67, ER, PgR assessments in the NordiQC breast cancer module. The discovery of the complete structure of these biomarkers and the design of their domains and subdomains by genetic engineering methods enable the synthesis of effective monoclonal antibodies. Quantitative indicators of the expression levels of tumour biomarkers of breast cancer were determined using mAb, depending on epitope specificity and affinity.


Sign in / Sign up

Export Citation Format

Share Document