An Efficient Routing Protocol for Vehicular Ad-Hoc Networks

Author(s):  
Anant Ram

Background: VANETs (Vehicular Ad-Hoc Networks) are the subclass of MANETs, which has recently emerged. Due to its swift changing topology and high mobility nature, it is challenging to design an efficient routing protocol for routing data amongst both moving vehicles and stationary units in VANETs. In addition, the performance of existing routing protocols is not effective due to high mobility characteristics of VANETs. Methods: In this paper, we proposed link reliable routing strategy that makes use of restricted greedy forwarding by considering neighborhood vehicles density and the least, average velocity with its own neighboring vehicles for the selection of next forwarder. Result: The proposed approach take the assumption that at every junction the police patrolling car (i.e. PCR junction node), which forwards the packet to vehicle onto correct road segment only. The link reliability is ensured by the mechanism for the selection of the next forwarder. Conclusion: The objective of this paper is to increase route reliability to provide increase throughput without greatly affecting end-to-end delay. The simulation results reveal that the proposed approach Reliable GPSR(R-GPSR) outperforms existing GPSR and E-GyTAR approach.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Marwan Mahmoud ◽  
Mahmoud Ahmad Al-Khasawneh

The advantages of vehicular ad hoc networks (VANETs) have been acknowledged, particularly during the last decade. Furthermore, VANET-related issues have been addressed by different researchers. Forwarding information professionally in a VANET is considered a challenging task precisely at the intersections where forwarding the information turns out to be extremely problematic. To elucidate this problem, many researchers have established routing protocols. The improved greedy perimeter stateless routing protocol (IGPSR) has been suggested, in the direction of employing greedy-mode proceeding traditional transportation's streets as well as to employ intersection-method at the joints. In view of greedy mode, the selection of the following stage is as in GPSR. By contrast, in the mode at an intersection, we would expect the vehicle guidelines to govern the following stage. The recreated consequences expose the algorithm, which is anticipated to undeniably demonstrate its competency.


Author(s):  
Amina Bengag ◽  
Asmae Bengag ◽  
Mohamed Elboukhari

In the recent years, the study and developments of networks that do not depend on any pre-existing infrastructure have been very popular. Vehicular Ad Hoc Networks (VANETs) belong to the class of these networks, in which each vehicle participates in routing by transmitting data for other nodes (vehicles). Due to the characteristics of VANET (e.g. high dynamic topology, different communication environment, frequently link breakage…), the routing process still one of the most challenging aspects. Hence, many routing protocols have been suggested to overcome these challenges. Moreover, routing protocols based on the position of vehicles are the most popular and preferred class, thanks to its many advantages like the less control overhead and the scalability. However, this class suffer from some problems such as frequent link breakages caused by the high-mobility of vehicles, which cause a low PDR and throughput. In this investigation, we introduce a novel greedy forwarding strategy used to create a new routing protocol based on the position of vehicles, to reduce the link breakages and get a stable route that improves the PDR and throughput. The proposed Density and Velocity (Speed, Direction) Aware Greedy Perimeter Stateless Routing protocol (DVA-GPSR) is based on the suggested greedy forwarding technique that utilizes the density, the speed and the direction for selecting the most convenient relaying node candidate. The results of simulation prove that DVA-GPSR protocol outperforms the classical GPSR in all studied metrics like PDR, throughput, and the ratio of routing overhead by changing the quantity of vehicles in urban and highway scenarios.


Author(s):  
Houacine Abdelkrim ◽  
Guezouri Mustapha

Vehicular ad-hoc networks (VANETs) is subclass of network of mobile ad-hoc network (MANET) type, it has emerged as a platform that supports inter-vehicles communication to improve road traffic safety. A conventional packet-based routing protocol where a packet moves from a source to a destination untouched throughout the entire process no longer satisfies the requirements in VANETs because of the high mobility of vehicles. This article proposes a routing protocol with an information-centric perspective for the VANETs, the techniques invoked are: Geocast instead of the classical multicast and the aggregation location-based. The simulation results under NS-3 and SUMO show that this protocol can help to limit the redundancy of the messages exchanged by their aggregation without maintaining a hierarchical structure; which minimizes transmission costs and ensures reliability and performance.


2013 ◽  
Vol 336-338 ◽  
pp. 1877-1881
Author(s):  
Jian Yao ◽  
Hao You Peng ◽  
Tian Fu

According to characteristics that the vehicles move fast and topology changes quickly in Vehicular Ad hoc Networks (VANETs), a novel routing protocol GMGP based on the location is proposed for VANETs. Predicting the changes of the neighboring nodes positions and using greedy forwarding mechanism forward packet, and using a movement perimeter forwarding algorithm to select the next reliable hop node on the basis of direction and velocity of the mobile nodes when the greedy forwarding fails, it improves the reliability of routing. When a more realistic vehicles mobility model is applied to the NS-2 simulation platform, the simulation indicates that the improved routing protocol has better performance than the GPSR routing protocol.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 449
Author(s):  
Sifat Rezwan ◽  
Wooyeol Choi

Flying ad-hoc networks (FANET) are one of the most important branches of wireless ad-hoc networks, consisting of multiple unmanned air vehicles (UAVs) performing assigned tasks and communicating with each other. Nowadays FANETs are being used for commercial and civilian applications such as handling traffic congestion, remote data collection, remote sensing, network relaying, and delivering products. However, there are some major challenges, such as adaptive routing protocols, flight trajectory selection, energy limitations, charging, and autonomous deployment that need to be addressed in FANETs. Several researchers have been working for the last few years to resolve these problems. The main obstacles are the high mobility and unpredictable changes in the topology of FANETs. Hence, many researchers have introduced reinforcement learning (RL) algorithms in FANETs to overcome these shortcomings. In this study, we comprehensively surveyed and qualitatively compared the applications of RL in different scenarios of FANETs such as routing protocol, flight trajectory selection, relaying, and charging. We also discuss open research issues that can provide researchers with clear and direct insights for further research.


Author(s):  
Thar Baker ◽  
Jose M. García-Campos ◽  
Daniel Gutiérrez Reina ◽  
Sergio Toral ◽  
Hissam Tawfik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document