Influence of Self-organization of Al2O3 and TiO2/Al2O3 Nanofilaments into Nanotubes Caused by High Temperature Hydrogen Treatment on Propane Cracking

Author(s):  
Olga K. Krasilnikova ◽  
Ekaterina B. Markova ◽  
Tatiana Y. Grankina ◽  
Elena V. Khozina ◽  
Valery N. Simonov
2011 ◽  
Vol 183 ◽  
pp. 179-184 ◽  
Author(s):  
Maria Sozańska

Positive nature of the effects of hydrogen on the properties of titanium alloys is manifested in the high temperature hydrogen treatment (HTM - Hydrogen Treatment of Materials), where hydrogen is temporary alloying component. This is possible because of the high values ​​of diffusion coefficients can be easily introduced into the titanium and it just as easily removed. Titanium and its alloys exhibit a high affinity for hydrogen absorption capacity, about 60% at. hydrogen at 600 °C. The hydrogen in titanium alloy is present in the form – an interstitial solution or titanium hydride. Since the specific volume of titanium hydride is about 13 ÷ 17% higher compared to α phase, it is high stress in the crystal lattice of this phase leads to local plastic deformation and large deformation phase. The paper presents the results of the possibilities of hydrogen using as a temporary alloying element in Ti-6Al-4V alloy. Treatment of hydrogen alloy consisted of three stages: hydrogenation in hydrogen gas atmosphere at 650 °C, a cyclic hydrogen-treatment (3 cycles 650 °C or 950 °C to 250 °C) and a dehydrogenation in vacuum (550 °C). It was shown that hydrogen affects appreciably changes the microstructure of surface layer of the tested titanium alloy. The aim of this study is thus to determine the effect of hydrogen on the two-phase microstructure, hardness, and corrosion resistance of the titanium alloy Ti-6Al-4V due to high-temperature hydrogen treatment.


Author(s):  
N.N. Gerasimenko ◽  
N.S. Balakleyskiy ◽  
A.D. Volokhovskiy ◽  
D.I. Smirnov ◽  
O.A. Zaporozhan

AbstractWe present a method of Si–Ge QDs formation by ion beam implantation (IBI) technique and high temperature annealing for self-organization. Implantation doses varied from 10^14 to 10^17 cm^–2, ion energies ranged from 50 to 150 keV, annealing proceeded at temperature of 950 to 1050°C in argon environment. Formed QDs show strong infrared (IR) photoluminescence (PL) in the temperature region 15–250 K.


2012 ◽  
Vol 191 ◽  
pp. 243-248
Author(s):  
Maria Sozańska

Influence of hydrogen on the structure of titanium alloys is a complex phenomenon, depending on the circumstances, may be negative or positive [1,2]. The presence of hydrogen in titanium alloys usually results in degradation of their microstructure and properties, as well promote some undesirable effects such as hydrogen corrosion and hydrogen embrittlement [3]. Positive nature of the effects of hydrogen on the properties of titanium alloys is manifested in the high temperature hydrogen treatment (HTM - Hydrogen Treatment of Materials), where hydrogen is temporary alloying component [4-9]. This is possible because of the high values of diffusion coefficients can be easily introduced into the titanium and it just as easily removed. Titanium and its alloys show the absorbability of almost 60 at. % of hydrogen at 600°C. The limit hydrogen of solubility in Tiα is very low and does not exceed 0.05 at. % at room temperature. The limit hydrogen of solubility in Tiβ is much higher and its maximum value is 48 at. %. Since the beginning of the titanium industry, a great deal of attention has been paid to control the hydrogen content at titanium products – above 0.2 ppm. The paper presents the results of the possibilities of hydrogen using as a temporary alloying element in Ti-6Al-4V alloy. Treatment of hydrogen alloy consisted of three stages: hydrogenation in hydrogen gas atmosphere at 650 °C, a cyclic hydrogen-treatment (3 cycles 650 °C to 250 °C) and a dehydrogenation in vacuum (550 °C). It was shown that hydrogen affects appreciably changes the microstructure of surface layer of the tested titanium alloy. The aim of this study is thus to determine the effect of hydrogen on the two-phase microstructure, hardness, and surface fracture of the titanium alloy Ti-6Al-4V due to high-temperature hydrogen treatment.


2018 ◽  
Vol 2 (89) ◽  
pp. 49-54
Author(s):  
S.I. Mudry ◽  
O.V. Shved ◽  
Yu.O. Kulyk ◽  
I.I. Bulyk ◽  
A.K. Borysiuk

Purpose: In order to clarify whether amorphization occurs in the pseudo-binary C14 HfNi0.6Al1.4 Laves phase a detailed investigation of the effect of hydrogen treatment on it phase-structural state has been studied. This type of compounds is of interest due to their high possibility to hydrogen absorption as Laves phase structures and as Hf-Ni alloys. Design/methodology/approach: We used a combination of hydrogen treatment and grinding methods for studying of the processes of controlled structure formation. High temperature transformations of the HfNi0.6Al1.4 alloy were pointed out by means of XRD analysis. Findings: By combination of two amorphization methods and high temperature measurements we have observed a phase structural transformation of the HfNi0.6Al1.4 alloy, which could be presented as: HfNi0.6Al1.4(cryst.) + H2 ® HfNi0.6Al1.4 (nanocryst.) + HfNi0.6Al1.4 (amorphous) + H2 ® HfH2 (amorphous) + AlH3 (amorphous) + Ni. Ferromagnetic- like properties of the pseudo-binary HfNi0.6Al1.4 Laves phase was found. Research limitations/implications: Complex research of HfNi0.6Al1.4 alloy revealed various structure features depending on phase content, thermodynamic parameters and conditions of hydrogen treatment. Obtained results suppose that further studies of structure and physical properties of Hf-Ni-Al alloys will allow to find the methods to control the producing of materials with desired properties. Practical implications: Using of hydrogen treatment is effective to produce Al-based alloys with improved magnetic properties. Originality/value: Treatment in hydrogen atmosphere allows improving the glass-forming ability in Hf-Ni-Al alloys.


CrystEngComm ◽  
2015 ◽  
Vol 17 (20) ◽  
pp. 3793-3799 ◽  
Author(s):  
Yang Zhang ◽  
Yanhua Leng ◽  
Jian Liu ◽  
Nianjing Ji ◽  
Xiulan Duan ◽  
...  

The mechanism of coloration and oxygen vacancy formation in KTP crystals treated by hydrogen annealing was systematically investigated.


2013 ◽  
Vol 197 ◽  
pp. 168-173 ◽  
Author(s):  
Maria Sozańska

Positive nature of the effects of hydrogen on the properties of titanium alloys is manifested in the high temperature hydrogen treatment (HTM - Hydrogen Treatment of Materials), where hydrogen is temporary alloying component. The paper presents the results of the possibilities of hydrogen using as a temporary alloying element in Ti-6Al-4V alloy and titanium Grade 3. Treatment of hydrogen alloy consisted of three stages: hydrogenation in hydrogen gas atmosphere at 650°C, a cyclic hydrogen-treatment (3 cycles 850 °C to 250 °C) and a dehydrogenation in vacuum (550°C). It was shown that hydrogen affects appreciably changes the microstructure of surface layer of the tested titanium alloy. The aim of this work is to determine the effect of hydrogen on the two-phase microstructure in Ti-6Al-4V alloy and Grade 3 titanium and hardness after high temperature hydrogen treatment.


Sign in / Sign up

Export Citation Format

Share Document