Photonics Crystal Fiber-based Cyanide detection in THz regime

Author(s):  
Himadri Shekhar Mondal ◽  
Abdullah Al-Mamun Bulbul ◽  
Md. Ekhlasur Rahaman ◽  
Md. Bellal Hossain ◽  
Etu Podder

Background: Cyanide is an immensely poisonous chemical that is exceedingly noxious to the human body. Methods: Considering this issue, we present a Rectangular core photonic crystal fiber (RPCF) to detect the cyanide. Zeonex is chosen as base material and the investigation is accomplished in the terahertz (THz) frequency region. Results: RPCF model proffers high sensitivity, enlarged effective area, and insignificant confinement loss. Conclusion: It is very worthy to note that the proposed model structure can be fabricated by applying the existing fabrication techniques

Author(s):  
Abdullah Al-Mamun Bulbul ◽  
Md. Bellal Hossain ◽  
Rahul Dutta ◽  
Mahadi Hassan

Introduction: This paper demonstrates the design of a sensor model for the detection of Sodium Chloride (NaCl) in an effective and efficient manner. Photonic Crystal Fiber (PCF) has been used to design this sensor model. Objective: Using Comsol Multiphysics software, the sensor model has been implemented and simulated to carry out an indepth analysis of the sensing performance of the proposed model. Method: The confinement loss, effective material loss, effective area, birefringence, and relative sensitivity has been analyzed to estimate the sensing efficiency of this model. The sensor performance has been analyzed for five different concentrations of NaCl. Results: From the analysis, it is found that for all the analytes, confinement loss maintains a moderate value for the frequency band ranging from 0.9 to 1.2 THz. However, it approaches absolute zero immediately after 1.2 THz. The sensor model results in a high effective area, which is highly desirable for every PCF. It shows 3.78 × 105 , 3.77 × 105 , 3.76 × 105 , 3.75 × 105 , and 3.743 × 105 μm 2 effective areas for 0%, 20%, 40%, 60% and 80% NaCl respectively at 1.4 THz. The effective material loss for this model is about 3.7×10-3 , 3.63×10-3 , 3.68×10 -3 , 3.672×10-3 and 3.652×10-3 cm -1 for 80%, 60%, 40%, 20% and 0% NaCl respectively at 1.4 THz. Birefringence is also high for the proposed model . The values of birefringence are approximately 0.002, 0.0018, 0.0017, 0.0016 and 0.0015 at 1.4 THz for 0%, 20%, 40%, 60% and 80% NaCl respectively. In addition to the above positive outcomes, the sensor model exhibits high sensitivity for both x and y polarization. The peak sensitivity of this sensor is 91.5%, 91.42%, 91.34%, 91.25% and 91.10% in x polarization direction whereas the peak sensitivity is 91.70%, 91.60%, 91.49%, 91.40% and 91.25% in y polarization direction for 80%, 60%, 40%, 20% and 0% NaCl respectively at 1.8 THz. The value of sensitivity is above 90% at 1.4 THz for all the five concentrations of NaCl. Conclusion: The analyzed optical properties signify the higher efficiency and effectiveness of the sensor model in the detection of NaCl.


2020 ◽  
Vol 12 (4) ◽  
pp. 94
Author(s):  
Mohammad Saiful Islam ◽  
Anwar Sadath ◽  
Md. Rakibul Islam ◽  
Mohammad Faisal

Nowadays photonic crystal fiber (PCF) is used for sensing purposes in different fields. In this work, we have proposed a PCF based chemical (Benzene and Ethanol) sensor. Finite Element Method (FEM) based software COMSOL 5.3a is used to investigate the numerical characteristics for the proposed structure. From the numerical analysis, we obtained high sensitivity with low losses for an optimum core diameter of 210 µm. Our proposed PCF works on a broad range of core diameters and THz frequency spectra. The fabrication of this model is very simple due to its simplistic design structure. Full Text: PDF ReferencesMd.F.H. Arif, Md.J.H. Biddut, "A new structure of photonic crystal fiber with high sensitivity, high nonlinearity, high birefringence and low confinement loss for liquid analyte sensing applications", Sensing Bio-Sensing Res. 12, 8 (2017). CrossRef P. Kumar, Md.H. Bikash, K. Ahmed, S. Sen, "A Novel Hexahedron Photonic Crystal Fiber in Terahertz Propagation: Design and Analysis", Photonics 6(1), 32 (2019). CrossRef S. Asaduzzaman, K. Ahmed, T. Bhuiyan, T. Farah, "Hybrid photonic crystal fiber in chemical sensing", SpringerPlus 5, 748 (2016). CrossRef Md.S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, M.R. Islam, "Ultra low-loss hybrid core porous fiber for broadband applications", App. Opt. 56(4), 1232 (2017). CrossRef S. Atakaramians, S. Afshar, H. Ebendorff-Heidepriem, M. Nagel, B.M. Fischer, D. Abbott, T.M. Monro, "THz porous fibers: design, fabrication and experimental characterization", Opt. Expr. 17(16), 14053 (2009). CrossRef


2021 ◽  
Author(s):  
Zhenkai Fan ◽  
Jianye Qin ◽  
Shichao Chu ◽  
Junling Gao

Abstract A high sensitivity near-infrared photonic crystal fiber (PCF) refractive index sensor based on surface plasmon resonance (SPR) is proposed in this paper. The sensing performance of the PCF refractive index sensor is calculated and analyzed by using the finite element method (FEM). The coated metal material selects for chemically stable gold, which is used to induce SPR. The resonant coupling will occurs when the phase matching condition is met between the surface plasmon polariton (SPP) mode and the fundamental mode. The influence of the diameter of the central hole and the thickness of the gold film on the resonance wavelength and the confinement loss was studied. Numerical results demonstrate that the average sensitivity of the sensor can reach to 3200nm/RIU, which can be used in the field of refractive index detecting.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 249
Author(s):  
Abdul Mu’iz Maidi ◽  
Pg Emeroylarffion Abas ◽  
Pg Iskandar Petra ◽  
Shubi Kaijage ◽  
Nianyu Zou ◽  
...  

A novel liquid-infiltrated photonic crystal fiber model applicable in liquid sensing for different test liquids—water, ethanol and benzene—has been proposed. One core hole and three air hole rings have been designed and a full vector finite element method has been used for numerical investigation to give the best results in terms of relative sensitivity, confinement loss, power fraction, dispersion, effective area, nonlinear coefficient, numerical aperture and V-Parameter. Specially, the assessed relative sensitivities of the proposed fiber with water, ethanol and benzene are 94.26%, 95.82% and 99.58%, respectively, and low confinement losses of 1.52 × 10−11 dB/m with water, 1.21 × 10−12 dB/m with ethanol and 6.01 × 10−16 dB/m with benzene, at 1.0 μm operating wavelength. This novel PCF design is considered simple and can be easily fabricated for practical use, and the assessed waveguide properties has determined the potential applicability in real liquid sensing applications.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-5
Author(s):  
A. Abbaszadeh ◽  
S. Makouei ◽  
S. Meshgini

A new triangular photonic crystal fiber with a based microstructure core gas sensor has been proposed for the wavelength range from 1.1μm to 1.7μm. The guiding trait of the proposed structure depends on geometric parameters and wavelength, which are numerically studied by the finite element method. According to the results, the relative sensitivity obtained as high as 75.14% at 1.33μm wavelength. high birefringence and effective area are also obtained by order of 3.75×10-3 and 14.07 μm2 finally, low confinement loss of 1.41×10-2 dB/m is acquired at the same wavelength. The variation of the diameters in the cladding and core region is investigated and the results show that this structure has good stability for manufacturing goals. Since the results show the highest sensitivity at wavelengths around 1.2μm to 1.7μm, which is the absorption line of many gases such as methane (CH4), hydrogen fluoride (HF), ammonia (NH3), this gas sensor can be used for medical and industrial applications.


Photonics ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 16
Author(s):  
Abdul Mu’iz Maidi ◽  
Izaddeen Yakasai ◽  
Pg Emeroylariffion Abas ◽  
Malik Muhammad Nauman ◽  
Rosyzie Anna Apong ◽  
...  

A simple hexagonal lattice photonic crystal fiber model with liquid-infiltrated core for different liquids: water, ethanol and benzene, has been proposed. In the proposed structure, three air hole rings are present in the cladding and three equal sized air holes are present in the core. Numerical investigation of the proposed fiber has been performed using full vector finite element method with anisotropic perfectly match layers, to show that the proposed simple structure exhibits high relative sensitivity, high power fraction, relatively high birefringence, low chromatic dispersion, low confinement loss, small effective area, and high nonlinear coefficient. All these properties have been numerically investigated at a wider wavelength regime 0.6–1.8 μm within mostly the IR region. Relative sensitivities of water, ethanol and benzene are obtained at 62.60%, 65.34% and 74.50%, respectively, and the nonlinear coefficients are 69.4 W−1 km−1 for water, 73.8 W−1 km−1 for ethanol and 95.4 W−1 km−1 for benzene, at 1.3 µm operating wavelength. The simple structure can be easily fabricated for practical use, and assessment of its multiple waveguide properties has justified its usage in real liquid detection.


Sign in / Sign up

Export Citation Format

Share Document