Fabrication, in vitro and in vivo Characterization of Solid Dispersion - Microsphere Controlled Release System for Lornoxicam

Author(s):  
Suraj Nupane ◽  
Dipti Srivastava ◽  
Mohini Chaurasia ◽  
Himani Awasthi

Background: Lornoxicam is widely used for its anti-inflammatory, analgesic and antipyretic properties. However, it suffers from the limitations of possessing a relatively short elimination half-life ranging from 3 to 5 h, thereby; leading to repeated dosing which in turn may cause local irritation and ulceration. In addition, LXM also exhibits pHdependent solubility. Effective management of inflammation in diseases such as arthritis requires the formulation of delivery systems that may be able to provide immediate release of drug for instant relief which shall be maintained for a prolonged period. Objective: The present research work was aimed to modify the release pattern of poorly water-soluble drug Lornoxicam by designing a biphasic tablet comprising of solid dispersion (immediate release form) and microspheres (controlled release form) for the effective management of inflammation. Methods: The solid dispersion (SD) was prepared by melting method using PEG 4000 and tween 80 and formation was confirmed by Differential Scanning Calorimetry (DSC) and Powder X-ray Diffraction (PXRD) studies. Polymeric microspheres loaded with Lornoxicam were prepared by ‘Emulsion Solvent-Evaporation’ method using Eudragit S-100 and Eudragit L-100. Microspheres (MS) were evaluated for drug entrapment efficiency, drug loading, drug content, particle size and in vitro release behaviour. Optimized microspheres (polymer concentration 0.5% w/v and drug concentration 0.1% w/v and solid dispersion (drug: PEG 4000: 4:6) were compressed in the ratio of 1:3 to produce biphasic tablet. The prepared tablets were evaluated for various pre-compression and post-compression parameters. Antiinflammatory activity of the F4, M6 and the combination of SD and Microspheres in a ratio of 1:3 was carried out by Carrageenan induced paw edema method in Wistar rats. Results: The solid dispersions prepared by melting technique showed an enhanced dissolution rate as compared to the pure drug. LXM microspheres exhibited a sustained drug release. In vitro release of lornoxicam from biphasic tablets showed that 20 % of the drug released at the end of first one hour, followed by 33% release at the end of 4th h and maximum release of 94.1 % at the end of 10 h. The prolonged effect continued till the end of 12 h. Results showed that the mixture of MS + SD exhibited 48 % inhibition in 30 min which is increased to 88.63% at the end of 4 h which can be explained by initial burst release from the soluble layer of SD (which gave initial required effective concentration of Lornoxicam) followed by sustained release from matrix of microspheres (which maintained required level of Lornoxicam in blood). Conclusion: A successful modification of the release pattern of LXM was achieved by designing a biphasic tablet comprising of solid dispersion for the effective management of inflammation.

2020 ◽  
Vol 88 (4) ◽  
pp. 52
Author(s):  
Mona Qushawy ◽  
Ali Nasr ◽  
Shady Swidan ◽  
Yasmin Mortagi

Glimepiride is an antidiabetic drug which is one of the third generation sulfonylureas. It belongs to class II, according to the BCS (Biopharmaceutical Classification System), which is characterized by low solubility and high permeability. The aim of this work was to formulate glimepiride as solid dispersion using water-soluble carriers to enhance its aqueous solubility and thus enhance its bioavailability. Nine formulations of glimepiride solid dispersion were prepared by a solvent evaporation technique using three different carriers (mannitol, polyethylene glycol 6000, and β-cyclodextrin) with three different drug carrier ratio (1:1, 1:3, and 1:6). Formulation variables were optimized using 32 full factorial design. The prepared formulations were evaluated for production yield, drug content, micromeritic properties, thermal analysis, in-vitro release, and in-vivo hypoglycemic effect. All prepared formulations showed high production yield ranged from 98.4 ± 2.8 to 99.8 ± 2.2% and high drug content in the range of 97.2 ± 3.2 to 99.6 ± 2.1%. The micromeritic properties revealed that all prepared glimepiride formulations showed good flowability. The differential scanning calorimetry study revealed the presence of the drug in the more soluble amorphous form. In accordance with the results of in vitro release study, it was found that the solubility of glimepiride was increased by increasing the drug carrier ratio, compared with the pure form of the drug. It was found that F9 showed a high and rapid reduction in blood glucose levels in diabetic rats, which indicated the success of a solid dispersion technique in improving the solubility and hence the bioavailability of glimepiride.


Drug Research ◽  
2017 ◽  
Vol 67 (11) ◽  
pp. 653-660 ◽  
Author(s):  
Marilena Vlachou ◽  
Angeliki Siamidi ◽  
Dimitrios Spaneas ◽  
Dimitrios Lentzos ◽  
Polixeni Ladia ◽  
...  

AbstractThe aim of the present investigation was to develop matrix tablet formulations for the in vitro controlled release of two new tuberculocidal adamantane aminoethers (compounds III and IV), congeneric to the adamantane derivative SQ109, which is in final clinical trials, and aminoethers (I) and (II), using carefully selected excipients, such as polyvinylpyrrolidone, sodium alginate and lactose. The tablets were prepared using the direct compression method and dissolution experiments were conducted using the US Pharmacopoeia type II apparatus (paddle method) in gastric and intestinal fluids. The results suggest that both analogues, albeit more lipophilic than SQ109, and aminoethers (I) and (II), have the requisite in vitro release characteristics for oral administration. In conclusion, these formulations merit further assessment by conducting in vivo studies, at a later stage.


1970 ◽  
Vol 2 (1) ◽  
pp. 56-60
Author(s):  
Nazia Zaman ◽  
Md Mesbah Uddin Talukder ◽  
Tasnuva Haque ◽  
Md Khairul Alam ◽  
Kanij Fatema

The present study was carried out to develop biodegradable intrascleral implants of Dexamethasone Sodium Phosphate and to evaluate the release pattern of the drug from the prepared implants. Intrascleral implants were prepared by using biodegradable polymer L-PLA (m.wt. 61,200 Da). Sodium chloride (NaCl), gelatin and glycerol monostearate (GMS) were used in various formulations to observe the effects of these additives on the release of Dexamethasone Sodium Phosphate from the prepared L-PLA based intrascleral implants. Five different formulations were prepared for this study and were coded as FD-1 (10%drug+L-PLA), FD-2 (20%drug+L-PLA), FD-3 (10%drug+L-PLA+5%NaCl), FD-4 (10%drug+L-PLA +5%Gelatin) and FD-5 (10%drug+L-PLA+10% GMS). Discs were prepared and made into appropriate shape before submerging into the buffer solution of pH 7.4 in different vials. The in vitro release profile of Dexamethasone Sodium Phosphate from the implants showed a biphasic release pattern with an initial burst followed by a diffusive phase. It was observed that FD-1 and FD-2 showed 19.63% and 29.87% release on the first day and 24.22% and 38.5% release respectively at day 30. The drug loading of FD-1 and FD-2 was 10% and 20% respectively. Among FD-3, FD-4 and FD-5; FD-3 showed highest release (32.1%) at day 30 in which 5% NaCl was used. FD-4 showed 27.45% release at day 30 where gelatin, a hydrophilic agent was used and FD-5 containing GMS, a lipid material, was found to be most retarding (19.22% at day 30). The results of the dissolution study provide an idea that L-PLA may be successfully used for the preparation of biodegradable intrascleral implant of Dexamethasone Sodium Phosphate. Key words: Dexamethasone Sodium Phosphate; Bioidegradable polymer; Intrascleral implants. DOI: 10.3329/sjps.v2i1.5817Stamford Journal of Pharmaceutical Sciences Vol.2(1) 2009: 56-60


2014 ◽  
Vol 50 (4) ◽  
pp. 799-818 ◽  
Author(s):  
Tariq Ali ◽  
Muhammad Harris Shoaib ◽  
Rabia Ismail Yousuf ◽  
Sabahat Jabeen ◽  
Iyad Naeem Muhammad ◽  
...  

The aim of the present study was to develop tizanidine controlled release matrix. Formulations were designed using central composite method with the help of design expert version 7.0 software. Avicel pH 101 in the range of 14-50% was used as a filler, while HPMC K4M and K100M in the range of 25-55%, Ethylcellulose 10 ST and 10FP in the range of 15 - 45% and Kollidon SR in the range of 25-60% were used as controlled release agents in designing different formulations. Various physical parameters including powder flow for blends and weight variation, thickness, hardness, friability, disintegration time and in-vitro release were tested for tablets. Assay of tablets were also performed as specified in USP 35 NF 32. Physical parameters of both powder blend and compressed tablets such as compressibility index, angle of repose, weight variation, thickness, hardness, friability, disintegration time and assay were evaluated and found to be satisfactory for formulations K4M2, K4M3, K4M9, K100M2, K100M3, K100M9, E10FP2, E10FP9, KSR2, KSR3 & KSR9. In vitro dissolution study was conducted in 900 ml of 0.1N HCl, phosphate buffer pH 4.5 and 6.8 medium using USP Apparatus II. In vitro release profiles indicated that formulations prepared with Ethocel 10 standard were unable to control the release of drug while formulations K4M2, K100M9, E10FP2 & KSR2 having polymer content ranging from 40-55% showed a controlled drug release pattern in the above mentioned medium. Zero-order drug release kinetics was observed for formulations K4M2, K100M9, E10FP2 & KSR2. Similarity test (f2) results for K4M2, E10FP2 & KSR2 were found to be comparable with reference formulation K100M9. Response Surface plots were also prepared for evaluating the effect of independent variable on the responses. Stability study was performed as per ICH guidelines and the calculated shelf life was 24-30 months for formulation K4M2, K100M9 and E10FP2.


Sign in / Sign up

Export Citation Format

Share Document