simulated intestinal fluid
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 76)

H-INDEX

15
(FIVE YEARS 5)

Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 113
Author(s):  
Amin Zarei ◽  
Leila Khazdooz ◽  
Sara Madarshahian ◽  
Mojtaba Enayati ◽  
Imann Mosleh ◽  
...  

Nicotinamide riboside chloride (NRCl) is an effective form of vitamin B3. However, it cannot be used in ready-to-drink (RTD) beverages or high-water activity foods because of its intrinsic instability in water. To address this issue, we synthesized nicotinamide riboside trioleate chloride (NRTOCl) as a new hydrophobic nicotinamide riboside (NR) derivative. Contrary to NRCl, NRTOCl is soluble in an oil phase. The results of stability studies showed that NRTOCl was much more stable than NRCl both in water and in oil-in-water emulsions at 25 °C and 35 °C. Finally, we evaluated the bioavailability of NRTOCl by studying its digestibility in simulated intestinal fluid. The results demonstrated that NRTOCl was partially digestible and released NR in the presence of porcine pancreatin in a simulated intestinal fluid. This study showed that NRTOCl has the potential to be used as an NR derivative in ready-to-drink (RTD) beverages and other foods and supplement applications.


2021 ◽  
Vol 1 (1) ◽  
pp. 48-59
Author(s):  
Junichiro Wakamatsu ◽  
Kanae Sato ◽  
Keisuke Uryu ◽  
Isafumi Maru

A new tablet system was examined for an intestinal delivery system using hydroxypropyl methylcellulose (HPMC) and shellac. HPMC was incorporated into the inside of the tablet, and shellac was coated on the surface, which was evaluated for its controlled-release property through several dissolution tests, firstly in vitro and then via two kinds of clinical studies with healthy volunteers. The clinical studies were originally designed by employing X-ray photography for the movements of the tablets in the gastrointestinal tract and an electronical device to easily analyze the absorption profile of glucose, a model compound. It was found that the dissolution of the tablet was strongly suppressed in a simulated gastric fluid (pH 1.2) and subsequently started to disintegrate in a simulated intestinal fluid (pH 6.8). The first human study with X-ray photography revealed that the model tablets could pass through the stomach without disintegrating. The controlled release of the tablets was further confirmed via analyses of the AUC, Cmax, and Tmax for the blood glucose concentration with other volunteers. The AUC and Cmax were significantly reduced by using our system, thus concluding that the delivery system combined with the addition of HPMC and a shellac coating unequivocally leads to controlled release in the human gastrointestinal tract.


2021 ◽  
Author(s):  
Kat Pick ◽  
Tingting Ju ◽  
Benjamin P. Willing ◽  
Tracy Lyn Raivio

In this study, we describe the isolation and characterization of novel bacteriophage vB_EcoP_Kapi1 (Kapi1) isolated from a strain of commensal Escherichia coli inhabiting the gastrointestinal tract of healthy mice. We show that Kapi1 is a temperate phage integrated into tRNA argW of strain MP1 and describe its genome annotation and structure. Kapi1 shows limited homology to other characterized prophages but is most similar to the seroconverting phages of Shigella flexneri, and clusters taxonomically with P22-like phages. The receptor for Kapi1 is the lipopolysaccharide O-antigen, and we further show that Kapi1 alters the structure of its hosts O-antigen in multiple ways.  Kapi1 displays unstable lysogeny, and we find that lysogeny is favored during growth in simulated intestinal fluid. Furthermore, Kapi1 lysogens have a competitive advantage over their non-lysogenic counterparts both in vitro and in vivo, suggesting a role for Kapi1 during colonization. We thus report the use of MP1 and Kapi1 as a model system to explore the molecular mechanisms of mammalian colonization by E. coli to ask what the role(s) of prophages in this context might be.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zunaira Huma Ghauri ◽  
Atif Islam ◽  
Muhammad Abdul Qadir ◽  
Nafisa Gull ◽  
Bilal Haider ◽  
...  

AbstractpH responsive hydrogels have gained much attraction in biomedical fields. We have formulated ternary hydrogel films as a new carrier of drug. Polyelectrolyte complex of chitosan/guar gum/polyvinyl pyrrolidone cross-linked via sodium tripolyphosphate was developed by solution casting method. Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis were conducted to examine the interactions between the polymeric chains, surface morphology and thermal stability, respectively. The swelling tests resulted that the swelling was reduced with the increase in the concentration of crosslinker due to the more entangled arrangement and less availability of pores in hydrogels. Ciprofloxacin hydrochloride was used as a model drug and its release in simulated gastric fluid, simulated intestinal fluid and phosphate buffer saline solution was studied. pH responsive behaviour of the hydrogels have subjected these hydrogels for drug release applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Vijay Kumar Panthi ◽  
Saurav Kumar Jha ◽  
Raghvendra Chaubey ◽  
Rudra Pangeni

Serratiopeptidase (SRP) is a proteolytic enzyme that emerged as one of the most potent anti-inflammatory and analgesic drugs. The purpose of the present study was to formulate and evaluate enteric-coated tablets for SRP and investigate their stability using a simple and validated analytical method by ultraviolet (UV) spectroscopy. The colloidal silicon dioxide (2.50%), sodium starch glycolate (3.44%), and crospovidone (2.50%) were used as appropriate excipients for the development of core part of tablets. To protect the prepared tablets from acidic environment in the stomach, white shellac, castor oil, HPMC phthalate 40, and ethyl cellulose were used. The seal coating and enteric coating attained were 2.75% and 6.74%, respectively. SRP was found to be linear at 265 nm in the concentration range of 25–150 µg/mL. The results revealed that our developed method was linear (R2 = 0.999), precise (RSD % = 0.133), and accurate (% recovery = 99.96–103.34). The formulated SRP tablets were found to be stable under accelerated conditions as well as under room temperature for 6 months (assay %: >97.5%). The in vitro drug release study demonstrated that enteric-coated tablets were able to restrict SRP release in both acidic environments: 0.1 N HCl and simulated gastric fluid (pH 1.2). Moreover, at 60 minutes, the formulated SRP tablets revealed 13.0% and 8.98% higher drug release in phosphate buffer (pH 6.8) and simulated intestinal fluid (pH 6.8), respectively, compared to the marketed tablet formulation. This study concludes that enteric-coated tablets of SRP with higher drug release in the intestine can be prepared and examined for their stability using validated analytical technique of UV spectroscopy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Patricia Fajardo-Cavazos ◽  
Wayne L. Nicholson

To enhance the gastrointestinal health of astronauts, probiotic microorganisms are being considered for inclusion on long-duration human missions to the Moon and Mars. Here we tested three commercial probiotics—Bifidobacterium longum strain BB536, Lactobacillus acidophilus strain DDS-1, and spores of Bacillus subtilis strain HU58—for their survival to some of the conditions expected to be encountered during a 3-year, round trip voyage to Mars. All probiotics were supplied as freeze-dried cells in capsules at a titer of >109 colony forming units per capsule. Parameters tested were survival to: (i) long-term storage at ambient conditions, (ii) simulated Galactic Cosmic Radiation and Solar Particle Event radiation provided by the NASA Space Radiation Laboratory, (iii) exposure to simulated gastric fluid, and (iv) exposure to simulated intestinal fluid. We found that radiation exposure produced minimal effects on the probiotic strains. However, we found that that the shelf-lives of the three strains, and their survival during passage through simulations of the upper GI tract, differed dramatically. We observed that only spores of B. subtilis were capable of surviving all conditions and maintaining a titer of >109 spores per capsule. The results indicate that probiotics consisting of bacterial spores could be a viable option for long-duration human space travel.


Author(s):  
Richard J. Clark ◽  
Thanh Huyen Phan ◽  
Angela Song ◽  
André J. Ouellette ◽  
Anne C. Conibear ◽  
...  

Defensins are key components of both innate and adaptive immune responses to pathogens. Cryptdins are mouse alpha-defensins that are secreted from Paneth cells in the small intestine and have disulfide-stabilised structures and antibacterial activities against both Gram-positive and Gram-negative bacteria. The folding and three-dimensional structures of alpha-defensins are thought to depend on a conserved glycine residue that forms a β-bulge. Here we investigated the role of this conserved glycine at position 19 of cryptdin-4 (Crp4) in terms of the folding, structure and stability. A Crp4 variant with D-Ala at position 19 folded efficiently, was stabilised by a large number of hydrogen bonds, and resisted proteolysis in simulated intestinal fluid. Although a variant with L-Ala at position 19 was able to adopt the correct fold, it showed less efficient folding and was degraded more rapidly than the D-Ala variant. These results demonstrate the key role that glycine residues can have in folding of bioactive peptides and can provide insights to guide design of stable antimicrobial peptides that fold efficiently.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Hanjie Yin ◽  
Jing Li ◽  
Haosheng Huang ◽  
Yuxin Wang ◽  
Xinjie Qian ◽  
...  

AbstractEscherichia coli (E. coli) O157:H7 bacterial infection causes severe disease in mammals and results in substantial economic losses worldwide. Due to the development of antibiotic resistance, bacteriophage (phage) therapy has become an alternative to control O157:H7 infection. However, the therapeutic effects of phages are frequently disappointing because of their low resistance to the gastrointestinal environment. In this study, to improve the stability of phages in the gastrointestinal tract, E. coli O157:H7 phages were microencapsulated and their in vitro stability and in vivo therapeutic efficiency were investigated. The results showed that compared to free phages, the resistance of microencapsulated phages to simulated gastric fluid and bile salts significantly increased. The microencapsulated phages were efficiently released into simulated intestinal fluid, leading to a better therapeutic effect in rats infected with E. coli O157:H7 compared to the effects of the free phages. In addition, the microencapsulated phages were more stable during storage than the free phages, showing how phage microencapsulation can play an essential role in phage therapy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1312
Author(s):  
Iram Shahzadi ◽  
Andrea Fürst ◽  
Patrick Knoll ◽  
Andreas Bernkop-Schnürch

This study was aimed to evaluate the impact of surfactants used for nanostructured lipid carriers (NLCs) to provide enzymatic protection for incorporated peptides. Insulin as a model peptide was ion paired with sodium dodecyl sulfate to improve its lipophilicity. Three NLC formulations containing polyethylene glycol ester (PEG-ester), polyethylene glycol ether (PEG-ether), and polyglycerol ester (PG-ester) surfactants were prepared by solvent diffusion method. NLCs were characterized regarding particle size, polydispersity index, and zeta potential. Biocompatibility of NLCs was assessed on Caco-2 cells via resazurin assay. In vitro lipolysis study was performed using a standard lipid digestion method. Proteolytic studies were performed in simulated gastric fluid containing pepsin and simulated intestinal fluid containing pancreatin. Lipophilicity of insulin in terms of log Poctanol/water was improved from −1.8 to 2.1. NLCs were in the size range of 64–217 nm with a polydispersity index of 0.2–0.5 and exhibited a negative surface charge. PG-ester NLCs were non-cytotoxic up to a concentration of 0.5%, PEG-ester NLCs up to a concentration of 0.25% and PEG-ether NLC up to a concentration of 0.125% (w/v). The lipolysis study showed the release of >90%, 70%, and 10% of free fatty acids from PEG-ester, PG-ester, and PEG-ether NLCs, respectively. Proteolysis results revealed the highest protective effect of PEG-ether NLCs followed by PG-ester and PEG-ester NLCs for incorporated insulin complex. Findings suggest that NLCs bearing substructures less susceptible to degrading enzymes on their surface can provide higher protection for incorporated peptides toward gastrointestinal proteases.


Author(s):  
Deepak Patel ◽  
Sunil Kumar Shah ◽  
Chandra Kishore Tyagi

The purpose of the present study was to prepare, characterize and evaluate the colon-targeted microspheres of mesalamine for the treatment and management of ulcerative colitis (UC). Microspheres were prepared by the ionic-gelation emulsification method using tripolyphosphate (TPP) as cross linking agent. The microspheres were coated with Eudragit S-100 by the solvent evaporation technique to prevent drug release in the stomach. The prepared microspheres were evaluated for surface morphology, entrapment efficiency, drug loading, micromeritic properties and in-vitro drug release. The microspheres formed had rough surface as observed in scanning electron microscopy. The entrapment efficiency of microspheres ranged from 43.72% - 82.27%, drug loading from 20.28% - 33.26%. The size of the prepared microspheres ranged between 61.22-90.41μm which was found to increase with increase in polymer concentration. All values are statistically significant as p<0.05. The release profile of mesalamine from eudragit-coated chitosan micro-spheres was found to be pH dependent. It was observed that Eudragit S100 coated chitosan microspheres gave no release in the simulated gastric fluid, negligible release in the simulated intestinal fluid and maximum release in the colonic environment. It was concluded from the study that Eudragit-coated chitosan microspheres were promising carriers for colon-targeted delivery of Mesalamine.


Sign in / Sign up

Export Citation Format

Share Document