controlled release tablets
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 20)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Murad Alam ◽  
Kifayat Ullah Shah ◽  
Kamran Ahmad Khan ◽  
Asif Nawaz ◽  
Hadia Bibi ◽  
...  

The development of floating tablets with required buoyancy, lag time, and controlling release behaviour of drugs at target site is truly interesting and challenging task for researchers. Current study is concerned with the designing of effervescent floating controlled release tablets of clarithromycin and famotidine to treat peptic ulcer due to Helicobacter pylori (H. pylori) infection. Five formulations (F1-F5) were prepared, among which three formulations were of bilayered tablets while the remaining were included as plain tablets. These tablets were prepared by direct compression method using hydroxypropyl methylcellulose (HPMC) K100M, HPMC K4M and sodium bicarbonate as swelling and floating agents respectively. The qualitative tests such as thickness, hardness, weight variation, friability and uniformity of content were performed to ensure the quality of prepared tablets. The floating lag time of all formulations ranged from 14 to 20 seconds. The effervescent floating tablets with HPMC K4M (F1, F3 & F5) attained the total floating time of more than 12 hours, while tablets prepared with HPMC K100M (F2 & F4) achieved the total floating time of less than 7 hours. This difference in floating behaviour could be due to the variation in compaction and flow properties of the two polymers. The formulations with HPMC K100M (F2 & F4) have comparatively more sustained drug release properties when compared to F1, F3 and F4 using HPMC K4M as swelling and floating polymers. This could be attributed to better compaction of HPMC K100M. The prepared tablets follow non-Fickian diffusion kinetics. Overall, these floating controlled release effervescent bilayer and plain tablets may enhance the compliance and therapeutic outcomes of clarithromycin and famotidine in treatment of H. pylori.


Author(s):  
Rajesh Pawar ◽  
Swati Jagdale

Aim: This research work was aimed to evaluate Metformin hydrochloride (MH) floating dosage form by In vitro evaluation/In vivo prediction and to evaluate it’s predictability through it’s application during the R&D using Insilico technique in WINONLIN Software. MH was examined as a model drug, which is a biguanide and is an hypoglycemic agent administered orally. The study was aimed to determine the the systemic concentrations of MH using In-vivo prediction. Study Design: Fabrication and assessment of Metformin hydrochloride floating drug delivery system: In Vitro evaluation /In Vivo prediction. Biorelevant media was selected for dissolution profile of 12 units of dosage form. Software assisted program used for data feeding and results output. Methodology: The absorption window for MH is the upper portion of the small gut in which the GI absorption is complete after 6 h. Hence gastroretentive formulation was developed and validity of dissolution study was extended by In vivo pharmacokinetic prediction using WinNonlin Software. A mechanistic oral absorption model was built in Phoenix WinNonlin® software. In the presented work, significant yet crucial, gastrointestinal (GI) variables are considered for biopredictive dissolution testing to account for a valuable input for physiologically-based pharmacokinetic (PBPK) platform programs. While simulations are performed and mechanistic insights are gained from such simulations from the WinNonlin program. Results: These floating tablets were observed for In vitro release and studied for In vivo pharmacokinetic prediction. From the obtained values, a meaningful In vivo prediction was done. interestingly from the results attained floating tablets showed sustained drug release and extended drug absorbed in 24h. Fascinatingly, from the data it was proved that drug formulation resides for desired time. The absorption of MH from the developed CR tablet was 1.4 fold higher than its marketed tablet and it had higher AUC0–t values than the marketed product which indicates superior bioavailability of test product compared to marketed tablet with similar dose in Invivo pharmacokinetic prediction. The mean value of biological half-life (t1/2) and Tmax of MH from test formulation is two times more, Test product has shown higher MRT, showing that the drug is maintained longer in the body in comparison to marketed product indicates controlled absorption. Conclusion: Here we concluded that, a comparative prediction pharmacokinetic evaluation of the fabricated controlled release tablets and the marketed formulation indicates that the fabricated controlled release tablets are well absorbed and the degree of absorption is greater than that of the marketed ER formulation with larger gastric residence time.


2021 ◽  
pp. 1-13
Author(s):  
Barkat Ali Khan ◽  
Muhammad Kamran Khan ◽  
Naeem Haider ◽  
Farid Menaa ◽  
Muhammad Khalid Khan

The aim of this study was to enhance the solubility of Aceclofenac with a new polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft co-polymer (Soloplus ®) and formulate it in controlled release (CR) tablet dosage form by direct compression method with HPMC K-15. Solid dispersions were prepared in different ratio of Aceclofenac and Soloplus ® as F1, F2 and F3 with different polymer ratios i.e. 30%, 50%, and 70% respectively. All the quality control tests were performed for the prepared controlled release tablets. Drug polymer interaction studies of Aceclofenac and Soloplus ® were carried using FTIR and XRD. Dissolution study was carried out against Alkaris ® as a standard reference. The formulation F3 showed optimum results and followed zero order kinetics. The Soloplus ® improved the solubility of the drug and the CR formulation enhanced the delivery in a sustained manner. Hence, the CR formulation enhanced the delivery of aceclofenac in a sustained manner, thereby an efficient drug delivery may lead to an effective anti-inflammatory activity.


Author(s):  
N.Phrudvish ◽  
T.Malyadri ◽  
Ch.Saibabu

The present research project aimed to develop a Control release oral Oxcarbazepine tablets by using Polymers like Tamarind gum, Xanthan gum, HPMC K4M, and HPMC K 15M were used for controlling the drug release, and the polymers are mixed in a predetermined ratio. Totally 12 formulations were prepared and evaluated for pre-compression and post-compression parameters, and all the results were found to be within the limits. From the drug and excipients compatibility studies(FT-IR) it was confirmed that the drug and excipients have any interactions. The in vitro dissolution studies revealed that the F12 formulation containing 18% of HPMC K4M & 18% of HPMC K15M controls the drug release up to 12hours. So F12 formulation was considered to be suitable for the formulation of Oxcarbazepine controlled-release tablets at 18% concentration of HPMC K4M & 18% concentration of HPMC K15M and the drug release kinetics revealed that the F12 formulation shows a super case II transport mechanism.


2020 ◽  
Vol 54 (2s) ◽  
pp. s108-s116
Author(s):  
Atul Phatak ◽  
Dhanashri Joshi ◽  
Mahesh Bhadgale ◽  
Pravin Chaudhari

2020 ◽  
Vol 21 (5) ◽  
Author(s):  
D. Elgaied-Lamouchi ◽  
N. Descamps ◽  
P. Lefèvre ◽  
A. R. Mackin-Mohamour ◽  
C. Neut ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document