Transition-Metal-Free Synthetic Strategies for the Cross-Coupling Reactions in Water: A Green Approach

2020 ◽  
Vol 07 ◽  
Author(s):  
Tanmay Chatterjee ◽  
Nilanjana Mukherjee

Abstract: A natural driving force is always working behind the synthetic organic chemists towards the development of ‘green’ synthetic methodologies for the synthesis of useful classes of organic molecules having potential applications. The majority of the essential classes of organic transformations, including C-C and C-X (X = heteroatom) bond-forming crosscoupling reactions, cross dehydrogenative-coupling (CDC) mostly rely on the requirement of transition-metal catalysts and hazardous organic solvents. Hence, the scope in developing green synthetic strategies by avoiding the use of transitionmetal catalysts and hazardous organic solvents for those important and useful classes of organic transformations is very high. Hence, several attempts are made so far. Water being the most abundant, cheap, and green solvent in the world; numerous synthetic methods have been developed in an aqueous medium. In this review, the development of transitionmetal- free green synthetic strategies for various important classes of organic transformations such as C-C and C-X bondforming cross-coupling, cross dehydrogenative-coupling, and oxidative-coupling in an aqueous media is discussed.

Synthesis ◽  
2020 ◽  
Vol 53 (02) ◽  
pp. 267-278
Author(s):  
Kenneth M. Nicholas ◽  
Chandrasekhar Bandari

AbstractThe prospective utilization of abundant, CO2-neutral, renewable feedstocks is driving the discovery and development of new reactions that refunctionalize oxygen-rich substrates such as alcohols and polyols through C–O bond activation. In this review, we highlight the development of transition-metal-promoted reactions of renewable alcohols and epoxides that result in carbon–carbon bond-formation. These include reductive self-coupling reactions and cross-coupling reactions of alcohols with alkenes and arene derivatives. Early approaches to reductive couplings employed stoichiometric amounts of low-valent transition-metal reagents to form the corresponding hydrocarbon dimers. More recently, the use of redox-active transition-metal catalysts together with a reductant has enhanced the practical applications and scope of the reductive coupling of alcohols. Inclusion of other reaction partners with alcohols such as unsaturated hydrocarbons and main-group organometallics has further expanded the diversity of carbon skeletons accessible and the potential for applications in chemical synthesis. Catalytic reductive coupling and cross-coupling reactions of epoxides are also highlighted. Mechanistic insights into the means of C–O activation and C–C bond formation, where available, are also highlighted.1 Introduction2 Stoichiometric Reductive Coupling of Alcohols3 Catalytic Reductive Coupling of Alcohols3.1 Heterogeneous Catalysis3.2 Homogeneous Catalysis4 Reductive Cross-Coupling of Alcohols4.1 Reductive Alkylation4.2 Reductive Addition to Olefins5 Epoxide Reductive Coupling Reactions6 Conclusions and Future Directions


2014 ◽  
Vol 10 ◽  
pp. 3031-3037 ◽  
Author(s):  
Kuppusamy Bharathimohan ◽  
Thanasekaran Ponpandian ◽  
A Jafar Ahamed ◽  
Nattamai Bhuvanesh

Herein, we describe a one-pot protocol for the synthesis of a novel series of polycyclic triazole derivatives. Transition metal-catalyzed decarboxylative CuAAC and dehydrogenative cross coupling reactions are combined in a single flask and achieved good yields of the respective triazoles (up to 97% yield). This methodology is more convenient to produce the complex polycyclic molecules in a simple way.


2016 ◽  
Vol 12 ◽  
pp. 2250-2255 ◽  
Author(s):  
Cui Chen ◽  
Weibing Liu ◽  
Peng Zhou

A TBHP-mediated dehydrogenative cross-oxidative-coupling approach has been developed for the synthesis of N-arylbenzamides from methylarenes and acetanilides. This cross-coupling method is free of transition metal catalysts and ligands, and no extra organic solvents are required, which make it an useful and attractive strategy for the straightforward construction of C–N bonds. Besides, this conversion is an important complement to the conventional C–N forming strategies.


2020 ◽  
Vol 21 (19) ◽  
pp. 7087 ◽  
Author(s):  
Taku Shoji ◽  
Tetsuo Okujima ◽  
Shunji Ito

Azulene derivatives with heterocyclic moieties in the molecule have been synthesized for applications in materials science by taking advantage of their unique properties. These derivatives have been prepared by various methods, involving electrophilic substitution, condensation, cyclization, and transition metal-catalyzed cross-coupling reactions. Herein, we present the development of the synthetic methods, reactivities, and physical properties for the heterocycle-substituted and heterocycle-fused azulenes reported in the last decade.


Synthesis ◽  
2017 ◽  
Vol 49 (20) ◽  
pp. 4586-4598 ◽  
Author(s):  
Martyn Henry ◽  
Mohamed Mostafa ◽  
Andrew Sutherland

Amination and amidation of aryl compounds using a transition-metal-catalyzed cross-coupling reaction typically involves prefunctionalization or preoxidation of either partner. In recent years, a new class of transition-metal-catalyzed cross-dehydrogenative coupling reaction has been developed for the direct formation of aryl C–N bonds. This short review highlights the substantial progress made for ortho-C–N bond formation via transition-metal-catalyzed chelation-directed aryl C–H activation and gives an overview of the challenges that remain for directed meta- and para-selective reactions.1 Introduction2 Intramolecular C–N Cross-Dehydrogenative Coupling2.1 Nitrogen Functionality as Both Coupling Partner and Directing Group2.2 Chelating-Group-Directed Intramolecular C–N Bond Formation3 Intermolecular C–N Cross-Dehydrogenative Coupling3.1 ortho-C–N Bond Formation3.1.1 Copper-Catalyzed Reactions3.1.2 Other Transition-Metal-Catalyzed Reactions3.2 meta- and para-C–N Bond Formation4 C–N Cross-Dehydrogenative Coupling of Acidic C–H Bonds5 Conclusions


2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


Sign in / Sign up

Export Citation Format

Share Document