scholarly journals Advances in Void Fraction, Flow Pattern Maps and Non-Boiling Heat Transfer Two-Phase Flow in Pipes with Various Inclinations

Author(s):  
Afshin J. Ghajar ◽  
Clement C. Tang
Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3973
Author(s):  
Mirosław Grabowski ◽  
Sylwia Hożejowska ◽  
Beata Maciejewska ◽  
Krzysztof Płaczkowski ◽  
Mieczysław E. Poniewski

The study presents the experimental and numeric heat transfer investigations in flow boiling of water through an asymmetrically heated, rectangular and horizontal minichannel, with transparent side walls. A dedicated system was designed to record images of two-phase flow structures using a high-speed video camera with a synchronous movement system. The images were analyzed with Matlab 2019a scripts for determination of the void fraction for each pattern of two-phase flow structures observed. The experimental data measured during the experimental runs included inlet and outlet temperature, temperature at three internal points of the heater body, volume flux of the flowing water, inlet pressure, pressure drop, current and the voltage drop in the heater power supply. The flows were investigated at Reynolds number characteristic of laminar flow. The mathematical model assumed the heat transfer process in the measurement module to be steady-state with temperature independent thermal properties of solids and flowing fluid. The defined two inverse heat transfer problems were solved with the Trefftz method with two sets of T- functions. Graphs were used to represent: the boiling curves, the local void fraction values, the boiling heat transfer coefficients and the errors of both of them for selected mass fluxes and heat fluxes.


Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


2019 ◽  
Vol 20 (5) ◽  
pp. 507 ◽  
Author(s):  
Lijun Deng ◽  
Jian Zhang ◽  
Guannan Hao ◽  
Jing Liu

To study factors affecting the formation and conversion of two-phase flow pattern as well as the heat transfer of piston cooling gallery, a transient visual target test bench was set up to research the oscillatory flow characteristics in the cooling gallery under idle condition of the engine. The computational fluid dynamics (CFD) was employed while dynamic mesh technology, SST k–ω turbulence model and volume of fluid (VOF) two-phase flow model were applied to simulate the flow process of piston cooling gallery so as to predict the distribution pattern of two-phase flow. Simulation results were in good agreement with that experimentally obtained. It was observed that in the reciprocating movement of the piston, the action of two-phase flow oscillation was severe, forming some unstable wave flows and slug flows. Results show that under the same pipe diameter, the increase of fluid viscosity results in the decrease of amplitude and the increase of the liquid slugs number as well as the enhancement on heat transfer effect. In addition, it was revealed that injection pressure has little effect on the two-phase flow pattern. However, when the pressure is reduced, the change of the liquid phase is weakened and the locations of flow pattern transition move towards to the behind, thus the impact on the heat transfer is also faint.


Cryogenics ◽  
1994 ◽  
Vol 34 ◽  
pp. 353-356 ◽  
Author(s):  
Wu Yuyuan ◽  
Lu Yu ◽  
Chen Liufang ◽  
Sun Changhai

Sign in / Sign up

Export Citation Format

Share Document