2019 ◽  
Vol 25 (5) ◽  
pp. 483-495 ◽  
Author(s):  
André Dallmann ◽  
Paola Mian ◽  
Johannes Van den Anker ◽  
Karel Allegaert

Background: In clinical pharmacokinetic (PK) studies, pregnant women are significantly underrepresented because of ethical and legal reasons which lead to a paucity of information on potential PK changes in this population. As a consequence, pharmacometric tools became instrumental to explore and quantify the impact of PK changes during pregnancy. Methods: We explore and discuss the typical characteristics of population PK and physiologically based pharmacokinetic (PBPK) models with a specific focus on pregnancy and postpartum. Results: Population PK models enable the analysis of dense, sparse or unbalanced data to explore covariates in order to (partly) explain inter-individual variability (including pregnancy) and to individualize dosing. For population PK models, we subsequently used an illustrative approach with ketorolac data to highlight the relevance of enantiomer specific modeling for racemic drugs during pregnancy, while data on antibiotic prophylaxis (cefazolin) during surgery illustrate the specific characteristics of the fetal compartments in the presence of timeconcentration profiles. For PBPK models, an overview on the current status of reports and papers during pregnancy is followed by a PBPK cefuroxime model to illustrate the added benefit of PBPK in evaluating dosing regimens in pregnant women. Conclusions: Pharmacometric tools became very instrumental to improve perinatal pharmacology. However, to reach their full potential, multidisciplinary collaboration and structured efforts are needed to generate more information from already available datasets, to share data and models, and to stimulate cross talk between clinicians and pharmacometricians to generate specific observations (pathophysiology during pregnancy, breastfeeding) needed to further develop the field.


1995 ◽  
Vol 23 (6) ◽  
pp. 651-672 ◽  
Author(s):  
Mats O. Karlsson ◽  
Stuart L. Beal ◽  
Lewis B. Sheiner

2014 ◽  
Vol 41 (3) ◽  
pp. 279-289 ◽  
Author(s):  
Leonid Gibiansky ◽  
Ekaterina Gibiansky ◽  
Valerie Cosson ◽  
Nicolas Frey ◽  
Franziska Schaedeli Stark

Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 612
Author(s):  
Annabel Werumeus Buning ◽  
Caspar J. Hodiamont ◽  
Natalia M. Lechner ◽  
Margriet Schokkin ◽  
Paul W. G. Elbers ◽  
...  

Altered pharmacokinetics (PK) of hydrophilic antibiotics in critically ill patients is common, with possible consequences for efficacy and resistance. We aimed to describe ceftazidime population PK in critically ill patients with a proven or suspected Pseudomonas aeruginosa infection and to establish optimal dosing. Blood samples were collected for ceftazidime concentration measurement. A population PK model was constructed, and probability of target attainment (PTA) was assessed for targets 100% T > MIC and 100% T > 4 × MIC in the first 24 h. Ninety-six patients yielded 368 ceftazidime concentrations. In a one-compartment model, variability in ceftazidime clearance (CL) showed association with CVVH. For patients not receiving CVVH, variability in ceftazidime CL was 103.4% and showed positive associations with creatinine clearance and with the comorbidities hematologic malignancy, trauma or head injury, explaining 65.2% of variability. For patients treated for at least 24 h and assuming a worst-case MIC of 8 mg/L, PTA was 77% for 100% T > MIC and 14% for 100% T > 4 × MIC. Patients receiving loading doses before continuous infusion demonstrated higher PTA than patients who did not (100% T > MIC: 95% (n = 65) vs. 13% (n = 15); p < 0.001 and 100% T > 4 × MIC: 20% vs. 0%; p = 0.058). The considerable IIV in ceftazidime PK in ICU patients could largely be explained by renal function, CVVH use and several comorbidities. Critically ill patients are at risk for underexposure to ceftazidime when empirically aiming for the breakpoint MIC for P. aeruginosa. A loading dose is recommended.


2011 ◽  
Vol 55 (6) ◽  
pp. 2927-2936 ◽  
Author(s):  
J. B. Bulitta ◽  
M. Kinzig ◽  
C. B. Landersdorfer ◽  
U. Holzgrabe ◽  
U. Stephan ◽  
...  

ABSTRACTCystic fibrosis (CF) patients are often reported to have higher clearances and larger volumes of distribution per kilogram of total body weight (WT) for beta-lactams than healthy volunteers. As pharmacokinetic (PK) data on cefpirome from studies of CF patients are lacking, we systematically compared its population PK and pharmacodynamic breakpoints for CF patients and healthy volunteers of similar body size. Twelve adult CF patients (median lean body mass [LBM] = 45.7 kg) and 12 healthy volunteers (LBM = 50.0 kg) received a single 10-min intravenous infusion of 2 g cefpirome. Plasma and urine concentrations were determined by high-performance liquid chromatography (HPLC). Population PK and Monte Carlo simulations were performed using NONMEM and S-ADAPT and a duration of an unbound plasma concentration above the MIC ≥ 65% of the dosing interval as a pharmacodynamic target. Unscaled clearances for CF patients were similar to those seen with healthy volunteers, and the volume of distribution was 6% lower for CF patients. Linear scaling of total clearance by WT resulted in clearance that was 20% higher (P≤ 0.001 [nonparametric bootstrap]) in CF patients. Allometric scaling by LBM explained the differences between the two subject groups with respect to average clearance and volume of distribution and reduced the unexplained between-subject variability of renal and nonrenal clearance by 10 to 14%. For the CF patients, robust (>90%) probabilities of target attainment (PTA) were achieved by the administration of a standard dose of 2 g/70 kg WT every 12 h (Q12h) given as 30-min infusions for MICs ≤ 1.5 mg/liter. As alternative dosage regimens, a 5-h infusion of 1.33 g/70 kg WT Q8h achieved robust PTAs for MICs ≤ 8 to 12 mg/liter and a continuous infusion of 4 g/day for MICs ≤ 12 mg/liter. Prolonged infusion of cefpirome is expected to be superior to short-term infusions for MICs between 2 and 12 mg/liter.


2015 ◽  
Vol 42 (6) ◽  
pp. 721-733 ◽  
Author(s):  
Nieves Velez de Mendizabal ◽  
Kimberley Jackson ◽  
Brian Eastwood ◽  
Steven Swanson ◽  
David M. Bender ◽  
...  

2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S71-S71 ◽  
Author(s):  
Sujata M Bhavnani ◽  
Nikolas J Onufrak ◽  
Jeffrey P Hammel ◽  
David R Andes ◽  
John S Bradley ◽  
...  

Abstract Background Resistance to AGs and numerous other classes continues to emerge. To ensure that susceptibility is accurately characterized and that clinicians have reliable data to select effective agents, appropriate in vitro susceptibility testing interpretive criteria (susceptible breakpoints [BKPTs]) are crucial to ensure optimal patient care. Recently, USCAST, the USA voice to EUCAST/EMA, evaluated the BKPTs for the 3 most commonly used AGs, gentamicin, tobramycin, and amikacin [Bhavnani et al., IDWeek 2016; P-1977]. As a result of consultation from interested parties, which included evaluating AG dosing regimens provided in the US-FDA product package inserts and simulated patients with varying creatinine clearance, these BKPTS were reassessed. Methods Data sources considered included longitudinal US reference MIC distributions using in vitro surveillance data collected over 18 years, QC performance (MIC, disk diffusion), population pharmacokinetics (PK), and in vivo PK-PD models. Using population PK models, PK-PD targets for efficacy and Monte Carlo simulation, percent probabilities of PK-PD target attainment by MIC after administration of traditional and extended interval AG dosing regimens were evaluated among simulated patients. Epidemiological cut-off and PK-PD BKPTs were considered when recommending BKPTs for AG–pathogen pairs. Results An example of PK-PD target attainment analysis output is provided in Figure 1 and a subset of recommended AG BKPTs for 3 pathogens is shown in Table 1. Updated USCAST BKPTs, which were based on the application of population PK and PK-PD models, simulation techniques, and contemporary MIC distribution statistics, are generally lower than those of EUCAST/EMA, USA-FDA, and CLSI. Adequate PK-PD target attainment was not achieved for some AG-pathogen pairs, even when high-dose AG dosing regimens and PK-PD targets for stasis were evaluated (e.g., gentamicin vs. P. aeruginosa; amikacin vs. S. aureus). Conclusion These revised AG BKPT recommendations, which will be made freely available to EUCAST, USA-FDA, and CLSI, will be finalized after considering comments from additional interested stakeholders. This process will be followed in an effort to bring harmonization to global BKPTs for AGs. Disclosures All authors: No reported disclosures.


2012 ◽  
Vol 51 (1) ◽  
pp. 115-130
Author(s):  
Sergei Leonov ◽  
Alexander Aliev

ABSTRACT We provide some details of the implementation of optimal design algorithm in the PkStaMp library which is intended for constructing optimal sampling schemes for pharmacokinetic (PK) and pharmacodynamic (PD) studies. We discuss different types of approximation of individual Fisher information matrix and describe a user-defined option of the library.


Sign in / Sign up

Export Citation Format

Share Document