scholarly journals Comparable Population Pharmacokinetics and Pharmacodynamic Breakpoints of Cefpirome in Cystic Fibrosis Patients and Healthy Volunteers

2011 ◽  
Vol 55 (6) ◽  
pp. 2927-2936 ◽  
Author(s):  
J. B. Bulitta ◽  
M. Kinzig ◽  
C. B. Landersdorfer ◽  
U. Holzgrabe ◽  
U. Stephan ◽  
...  

ABSTRACTCystic fibrosis (CF) patients are often reported to have higher clearances and larger volumes of distribution per kilogram of total body weight (WT) for beta-lactams than healthy volunteers. As pharmacokinetic (PK) data on cefpirome from studies of CF patients are lacking, we systematically compared its population PK and pharmacodynamic breakpoints for CF patients and healthy volunteers of similar body size. Twelve adult CF patients (median lean body mass [LBM] = 45.7 kg) and 12 healthy volunteers (LBM = 50.0 kg) received a single 10-min intravenous infusion of 2 g cefpirome. Plasma and urine concentrations were determined by high-performance liquid chromatography (HPLC). Population PK and Monte Carlo simulations were performed using NONMEM and S-ADAPT and a duration of an unbound plasma concentration above the MIC ≥ 65% of the dosing interval as a pharmacodynamic target. Unscaled clearances for CF patients were similar to those seen with healthy volunteers, and the volume of distribution was 6% lower for CF patients. Linear scaling of total clearance by WT resulted in clearance that was 20% higher (P≤ 0.001 [nonparametric bootstrap]) in CF patients. Allometric scaling by LBM explained the differences between the two subject groups with respect to average clearance and volume of distribution and reduced the unexplained between-subject variability of renal and nonrenal clearance by 10 to 14%. For the CF patients, robust (>90%) probabilities of target attainment (PTA) were achieved by the administration of a standard dose of 2 g/70 kg WT every 12 h (Q12h) given as 30-min infusions for MICs ≤ 1.5 mg/liter. As alternative dosage regimens, a 5-h infusion of 1.33 g/70 kg WT Q8h achieved robust PTAs for MICs ≤ 8 to 12 mg/liter and a continuous infusion of 4 g/day for MICs ≤ 12 mg/liter. Prolonged infusion of cefpirome is expected to be superior to short-term infusions for MICs between 2 and 12 mg/liter.

2010 ◽  
Vol 54 (3) ◽  
pp. 1275-1282 ◽  
Author(s):  
J. B. Bulitta ◽  
C. B. Landersdorfer ◽  
S. J. Hüttner ◽  
G. L. Drusano ◽  
M. Kinzig ◽  
...  

ABSTRACT Despite the promising activity of ceftazidime against Pseudomonas aeruginosa and Burkholderia cepacia, there has not yet been a study that directly compared the pharmacokinetics (PK) of ceftazidime in cystic fibrosis (CF) patients and healthy volunteers by population PK methodology. We assessed the population PK and PK/pharmacodynamic (PD) breakpoints of ceftazidime in CF patients and healthy volunteers. Eight CF patients (total body weight [WT] [average ± standard deviation] = 42.9 ± 18.4 kg) and seven healthy volunteers (WT = 66.2 ± 4.9 kg) received 2 g ceftazidime as a 5-min intravenous infusion. High-performance liquid chromatography (HPLC) was used for drug analysis, and NONMEM (results reported), S-ADAPT, and NPAG were used for parametric and nonparametric population PK modeling. We considered linear and allometric body size models to scale clearance and volume of distribution. Monte Carlo simulations were based on a target time of non-protein-bound plasma concentration of ceftazidime above MIC of ≥65%, which represents near-maximal killing. Unscaled total clearance was 19% lower in CF patients, and volume of distribution was 36% lower. Total clearance was 7.82 liters/h for CF patients and 6.68 liters/h for healthy volunteers with 53 kg fat-free mass. Allometric scaling by fat-free mass reduced the between-subject variability by 32% for clearance and by 18 to 26% for volume of both peripheral compartments compared to linear scaling by WT. A 30-min ceftazidime infusion of 2 g/70 kg WT every 8 h (q8h) achieved robust (≥90%) probabilities of target attainment (PTAs) for MICs of ≤1 mg/liter in CF patients and ≤3 mg/liter in healthy volunteers. Alternative modes of administration achieved robust PTAs up to markedly higher MICs of ≤8 to 12 mg/liter in CF patients for 5-h infusions of 2 g/70 kg WT q8h and ≤12 mg/liter for continuous infusion of 6 g/70 kg WT daily.


2007 ◽  
Vol 51 (7) ◽  
pp. 2497-2507 ◽  
Author(s):  
J. B. Bulitta ◽  
S. B. Duffull ◽  
M. Kinzig-Schippers ◽  
U. Holzgrabe ◽  
U. Stephan ◽  
...  

ABSTRACT Respiratory tract infections cause 90% of premature mortality in patients with cystic fibrosis (CF). Treatment of Pseudomonas aeruginosa infection is often very problematic. Piperacillin-tazobactam has good activity against P. aeruginosa, but its pharmacokinetics (PK) in CF patients has not been compared to the PK in healthy volunteers in a controlled clinical study. Therefore, we compared the population PK and pharmacodynamics (PD) of piperacillin between CF patients and healthy volunteers. We studied 8 adult (median age, 20 years) CF patients (average total body weight [WT], 43.1 ± 7.8 kg) and 26 healthy volunteers (WT, 71.1 ± 11.8 kg) who each received 4 g piperacillin as a 5-min intravenous infusion. We determined piperacillin levels by high-performance liquid chromatography, and we used NONMEM for population PK and Monte Carlo simulation. We used a target time of nonprotein-bound concentration above the MIC of 50%, which represents near-maximal bacterial killing. Unscaled total clearance was 25% lower, and the volume of distribution was 31% lower in CF patients. Allometric scaling by lean body mass reduced the unexplained (random) between-subject variability in clearance by 26% compared to the variability of linear scaling by WT. A standard dosage regimen of 3 g/70 kg body WT every 4 h as a 30-min infusion (daily dose, 18 g) achieved a robust (≥90%) probability-of-target attainment (PTA) for MICs of ≤12 mg/liter in CF patients and ≤16 mg/liter in healthy volunteers. Alternative modes of administration allowed a marked dose reduction to 9 g daily. Prolonged (4-h) infusions of 3 g/70 kg WT every 8 h and continuous infusion (daily dose, 9 g), achieved a robust PTA for MICs of ≤16 mg/liter in both groups. Piperacillin achieved PTA expectation values of 64% and 89% against P. aeruginosa infection in CF patients, based on susceptibility data from two German CF clinics.


2019 ◽  
Vol 64 (1) ◽  
Author(s):  
James M. Kidd ◽  
Colleen M. Sakon ◽  
Louise-Marie Oleksiuk ◽  
Jeffrey J. Cies ◽  
Rebecca S. Pettit ◽  
...  

ABSTRACT Adults with cystic fibrosis (CF) frequently harbor Staphylococcus aureus, which is increasingly antibiotic resistant. Telavancin is a once-daily rapidly bactericidal antibiotic active against methicillin-, linezolid-, and ceftaroline-resistant S. aureus. Because CF patients experience alterations in pharmacokinetics, the optimal dose of telavancin in this population is unknown. Adult CF patients (n = 18) admitted for exacerbations received 3 doses of telavancin 7.5 mg/kg of body weight (first 6 patients) or 10 mg/kg (final 12 patients) every 24 h (q24h). Population pharmacokinetic models with and without covariates were fitted using the nonparametric adaptive grid algorithm in Pmetrics. The final model was used to perform 5,000-patient Monte Carlo simulations for multiple telavancin doses. The best fit was a 2-compartment model describing the volume of distribution of the central compartment (Vc) as a multiple of total body weight (TBW) and the volume of distribution of the central compartment scaled to total body weight (Vθ) normalized by the median observed value (Vc = Vθ × TBW/52.1) and total body clearance (CL) as a linear function of creatinine clearance (CRCL) (CL = CLNR + CLθ × CRCL), where CLNR represents nonrenal clearance and CLθ represents the slope term on CRCL to estimate renal clearance. The mean population parameters were as follows: Vθ, 4.92  ± 0.76 liters · kg−1; CLNR, 0.59  ± 0.30 liters · h−1; CLθ, 5.97 × 10−3 ± 1.24 × 10−3; Vp (volume of the peripheral compartment), 3.77  ± 1.41 liters; Q (intercompartmental clearance), 4.08  ± 2.17 liters · h−1. The free area under the concentration-time curve (fAUC) values for 7.5 and 10 mg/kg were 30  ± 4.6 and 52  ± 12 mg · h/liter, respectively. Doses of 7.5 mg/kg and 10 mg/kg achieved 76.5% and 100% probability of target attainment (PTA) at a fAUC/MIC threshold of >215, respectively, for MIC of ≤0.12 mg/liter. The probabilities of reaching the acute kidney injury (AKI) threshold AUC (763 mg · h · liter−1) for these doses were 0% and 0.96%, respectively. No serious adverse events occurred. Telavancin 10 mg/kg yielded optimal PTA and minimal risk of AKI, suggesting that this FDA-approved dose is appropriate to treat acute pulmonary exacerbations in CF adults. (The clinical trial discussed in this study has been registered at ClinicalTrials.gov under identifier NCT03172793.)


2004 ◽  
Vol 48 (1) ◽  
pp. 281-284 ◽  
Author(s):  
John A. Bosso ◽  
Patrick A. Flume ◽  
Susan L. Gray

ABSTRACT The pharmacokinetics of many drugs are altered in patients with cystic fibrosis (CF), often necessitating different dosage requirements than those used in non-CF patients. The objective of this study was to determine the pharmacokinetics of linezolid, an antibiotic with good activity against gram-positive organisms such as methicillin-resistant Staphylococcus aureus, in patients with CF so that dosage requirements could be established. Twelve adult patients (6 male) ranging in age from 22 to 39 years were studied. A single 600-mg dose was administered intravenously over 0.5 h, and plasma samples were collected at 0 (predose), 0.5, 0.75, 1, 2, 4, 8, and 24 h. Linezolid concentrations were determined with a validated high-performance liquid chromatography assay. Pharmacokinetic parameters were estimated using standard noncompartmental methods. Blood chemistry and hematologic indices were determined before and after the study for safety purposes. All patients completed the study without encountering any adverse reactions. The pharmacokinetic parameters, while variable, with half-lives varying from 1.76 to 8.36 h, were similar to those previously described in other populations. Mean (± standard deviation) values for pharmacokinetic parameters of interest were as follows: elimination rate constant, 0.21 (0.11) h−1; half-life, 4.41 (2.43); volume of distribution at steady state, 0.87 (0.19) liters/kg of body weight; and total body clearance, 0.12 (0.06) liters/h/kg. No patient would have achieved the pharmacodynamic target of an area under the concentration-time curve/MIC ratio of 83 h for pathogens for which the MIC was 4 μg/ml. Patients with inadequate clinical responses to linezolid may require more frequent dosing.


2019 ◽  
Vol 67 (4) ◽  
pp. 602-609
Author(s):  
Mohamed Aboubakr ◽  
Ahmed Soliman

The plasma pharmacokinetics of danofloxacin was studied in healthy African catfish (Clarias gariepinus) following a single intravenous (IV) and intramuscular (IM) administration of 10 mg/kg at 22 °C. Catfish were divided into two groups (each group containing 78 fish), then danofloxacin mesylate (10 mg/kg) was administered IV (into the caudal vein) in Group 1 and IM (into the right epaxial muscle) in Group 2, and blood was obtained from the caudal vein before (0 h) and after (0.25, 0.5, 1, 2, 4, 8, 12, 24, 36, 48, 72 and 96 h) of drug administration. High-performance liquid chromatography was used for the determination of plasma concentration, and a non-compartmental model was used for the analysis of pharmacokinetic parameters. After IV administration, elimination half-life (t1/2λz, 24.49 h), mean residence time (MRT, 30.14 h), volume of distribution at steady state (Vdss, 1.07 L/kg) and total body clearance (CLT, 0.035 L/h/kg) were determined. After IM administration, t1/2λz, MRT, peak concentration (Cmax), time to reach Cmax and bioavailability were 47.64 h, 61.06 h, 5.22 µg/mL, 1 h and 67.12%, respectively. After IM administration, danofloxacin showed good bioavailability and long t1/2λz. The favourable pharmacokinetic characteristics after IM administration support the use of danofloxacin for the treatment of susceptible bacterial infections in catfish.


Author(s):  
Antonin Praet ◽  
Laurent Bourguignon ◽  
Florence Vetele ◽  
Valentine Breant ◽  
Charlotte Genestet ◽  
...  

Initial dosing and dose adjustment of intravenous tobramycin in cystic fibrosis children is challenging. The objectives of this study were to develop nonparametric population pharmacokinetic (PK) models of tobramycin in children with CF to be used for dosage design and model-guided therapeutic drug monitoring. We performed a retrospective analysis of tobramycin PK data in our CF children center. The Pmetrics package was used for nonparametric population PK analysis and dosing simulations. Both the maximal concentration over the MIC (Cmax/MIC) and daily area under the concentration-time curve to the MIC (AUC 24 /MIC) ratios were considered as efficacy target. Trough concentration (Cmin) was considered as the safety target. A total of 2884 tobramycin concentrations collected in 195 patients over 9 years were analyzed. A two-compartment model including total body weight, body surface area and creatinine clearance as covariates best described the data. A simpler model was also derived for implementation into the BestDose software to perform Bayesian dose adjustment. Both models were externally validated. PK/PD simulations with the final model suggest that an initial dose of tobramycin of 15 to 17.5 mg/kg/day was necessary to achieve Cmax/MIC ≥ 10 values for MIC values up to 2 mg/L in most patients. The AUC 24 /MIC target was associated with larger dosage requirements and higher Cmin. A daily dose of 12.5 mg/kg would optimize both efficacy and safety target attainment. We recommend to perform tobramycin TDM, model-based dose adjustment, and MIC determination to individualize intravenous tobramycin therapy in children with CF.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 286 ◽  
Author(s):  
Nirav Shah ◽  
Jürgen Bulitta ◽  
Martina Kinzig ◽  
Cornelia Landersdorfer ◽  
Yuanyuan Jiao ◽  
...  

The pharmacokinetics in patients with cystic fibrosis (CF) has long been thought to differ considerably from that in healthy volunteers. For highly protein bound β-lactams, profound pharmacokinetic differences were observed between comparatively morbid patients with CF and healthy volunteers. These differences could be explained by body weight and body composition for β-lactams with low protein binding. This study aimed to develop a novel population modeling approach to describe the pharmacokinetic differences between both subject groups by estimating protein binding. Eight patients with CF (lean body mass [LBM]: 39.8 ± 5.4kg) and six healthy volunteers (LBM: 53.1 ± 9.5kg) received 1027.5 mg cefotiam intravenously. Plasma concentrations and amounts in urine were simultaneously modelled. Unscaled total clearance and volume of distribution were 3% smaller in patients with CF compared to those in healthy volunteers. After allometric scaling by LBM to account for body size and composition, the remaining pharmacokinetic differences were explained by estimating the unbound fraction of cefotiam in plasma. The latter was fixed to 50% in male and estimated as 54.5% in female healthy volunteers as well as 56.3% in male and 74.4% in female patients with CF. This novel approach holds promise for characterizing the pharmacokinetics in special patient populations with altered protein binding.


Author(s):  
Ryan D Dunn ◽  
Ryan L Crass ◽  
Joseph Hong ◽  
Manjunath P Pai ◽  
Lynne C Krop

Abstract Purpose To compare methods of estimating vancomycin volume of distribution (V) in adults with class III obesity. Methods A retrospective, multicenter pharmacokinetic analysis of adults treated with vancomycin and monitored through measurement of peak and trough concentrations was performed. Individual pharmacokinetic parameter estimates were obtained via maximum a posteriori Bayesian analysis. The relationship between V and body weight was assessed using linear regression. Mean bias and root-mean-square error (RMSE) were calculated to assess the precision of multiple methods of estimating V. Results Of 241 patients included in the study sample, 159 (66.0%) had a BMI of 40.0–49.9 kg/m2, and 82 (34.0%) had a BMI of ≥50.0 kg/m2. The median (5th, 95th percentile) weight of patients was 136 (103, 204) kg, and baseline characteristics were similar between BMI groups. The mean ± S.D. V was lower in patients with a BMI of 40.0–49.9 kg/m2 than in those with a BMI of ≥50.0 kg/m2 (72.4 ± 19.6 L versus 79.3 ± 20.6 L, p = 0.009); however, body size poorly predicted V in regression analyses (R2 < 0.20). A fixed estimate of V (75 L) or use of 0.52 L/kg by total body weight yielded similar bias and error in this population. Conclusion Results of the largest analysis of vancomycin V in class III obesity to date indicated that use of a fixed V value (75 L) and use of a TBW-based estimate (0.52 L/kg) for estimation of vancomycin V in patients with a BMI of ≥40.0 kg/m2 have similar bias. Two postdistribution vancomycin concentrations are needed to accurately determine patient-specific pharmacokinetic parameters, estimate AUC, and improve the precision of vancomycin dosing in this patient population.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S423-S423
Author(s):  
Jamie L Wagner ◽  
J Taylor Loper ◽  
Austin R Morrison ◽  
Kayla R Stover ◽  
Katie E Barber

Abstract Background Ceftriaxone (CRO), while highly protein bound, retains a small volume of distribution. Obese patients have larger volumes of distributions and higher clearance than nonobese patients. The effect of these differences on the pharmacokinetics and efficacy of CRO remain unclear. Methods This retrospective cohort study included adult in-patients who received CRO for ≥72 hours as definitive monotherapy from July 2015 to July 2017. Patients were excluded if there was a lack of adequate source control at 72 hours or if there was a polymicrobial infection requiring multiple antibiotics. Obesity was defined as BMI ≥30 kg/m2. The primary outcome was clinical treatment failure, defined as changing therapy at &gt;72 hours due to clinical worsening, leukocytosis (WBC &gt; 10 × 109/L), fever (single temperature &gt;100.9°F) for &gt;72 hours, or readmission to the hospital within 30 days for re-infection. Secondary outcomes included discharge disposition and 30-day readmission. Results One hundred one patients were included: 39 obese patients and 62 nonobese patients. Median [IQR] age was 62 [51–70] years; 55% males. Median weight was 103 [95–120] kg in obese patients vs. 66 [58–77] kg in nonobese patients (P &lt; 0.001). There were no differences in comorbidities (Charlson 3[1–5] obese vs. 2[1–4] nonobese; P = 0.293). Infection sources were similar: urinary tract (54% obese vs. 52% nonobese; P = 0.827), respiratory (28% obese vs. 23% nonobese; P = 0.524), bloodstream (20% obese vs. 23% nonobese; P = 0.806). The most common causative organism was E. coli (48%). There were no differences in CRO regimen between groups (1g q24h: obese 54% vs. nonobese 69%; P = 0.115). Treatment failure occurred in 24 (61%) obese patients compared with 25(40%) nonobese patients (P = 0.038). Obese patients had delayed resolution of leukocytosis (54% vs. 29%, P = 0.013). Eight patients died (13% obese vs. 5% nonobese; P = 0.255); 82% of patients were not readmitted within 30 days. Conclusion Obese patients treated with ceftriaxone had higher rates of treatment failure compared with nonobese patients. While not statistically significant, there was numerically higher mortality in obese patients compared with nonobese patients. Obese patients may be slow to recover from infection when treated with CRO. Disclosures All authors: No reported disclosures.


1996 ◽  
Vol 1 (2) ◽  
pp. 86-92 ◽  
Author(s):  
D Westerling ◽  
H Bjork ◽  
P Svedman ◽  
P Hoglund

OBJECTIVE:To investigate the analgesic and nonanalgesic effects and the pharmacokinetics of an intravenous infusion of 2 mg hydromorphone over 20 mins.DESIGN:Open study.SUBJECTS:Twelve healthy volunteers.MEASUREMENTS:The analgesic effect of hydromorphone was evaluated serially using pressure pain thresholds (PPTs) measured on the third fingers and toes. The nonanalgesic effects of hydromorphone were measured as miosis, decrease of saliva production and central nervous effects such as euphoria/dysphoria, nausea, headache, fatigue and feeling of heaviness. Plasma concentration of hydromorphone was measured using high performance liquid chromatography.RESULTS:PPTs were significantly increased compared with baseline levels for up to 2 h after the infusion of hydromorphone. Significant miosis and reduction of saliva production were registered up to 6 h after drug administration. Fatigue and heaviness were reported by all subjects. In the studied opioid-naive subjects, the hydromorphone-induced analgesic effect was of shorter duration than the studied nonanalgesic effects. The terminal elimination half-life of hydromorphone was 1.87±0.4 h (± SD) (95% CI 1.61 to 2.13), systemic clearance was 1.81±0.25 L/min (95% CI 1.65 to 1.97) and volume of distribution was 4.15±0.86 L/kg (95% CI 3.6 to 4.71).CONCLUSION:Analgesia and nonanalgesic effects appear to be well correlated with the plasma concentrations of the hydromorphone.


Sign in / Sign up

Export Citation Format

Share Document