Coreference resolution of Korean anaphoric zero objects: Towards a supervised machine learning approach

Author(s):  
Euhee Kim ◽  
◽  
Myung-Kwan Park ◽  
2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


2001 ◽  
Vol 27 (4) ◽  
pp. 521-544 ◽  
Author(s):  
Wee Meng Soon ◽  
Hwee Tou Ng ◽  
Daniel Chung Yong Lim

In this paper, we present a learning approach to coreference resolution of noun phrases in unrestricted text. The approach learns from a small, annotated corpus and the task includes resolving not just a certain type of noun phrase (e.g., pronouns) but rather general noun phrases. It also does not restrict the entity types of the noun phrases; that is, coreference is assigned whether they are of “organization,” “person,” or other types. We evaluate our approach on common data sets (namely, the MUC-6 and MUC-7 coreference corpora) and obtain encouraging results, indicating that on the general noun phrase coreference task, the learning approach holds promise and achieves accuracy comparable to that of nonlearning approaches. Our system is the first learning-based system that offers performance comparable to that of state-of-the-art nonlearning systems on these data sets.


Sign in / Sign up

Export Citation Format

Share Document