The Role of Poly-hydroxy-alkanoate Form in Determining the Response of Enhanced Biological Phosphorus Removal Biomass to Volatile Fatty Acids

2002 ◽  
Vol 74 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Yan-Hua Liu ◽  
Cherie Geiger ◽  
Andrew Amis Randall
2010 ◽  
Vol 61 (7) ◽  
pp. 1837-1843 ◽  
Author(s):  
Q. Yuan ◽  
R. Sparling ◽  
P. Lagasse ◽  
Y. M. Lee ◽  
D. Taniguchi ◽  
...  

An enhanced biological phosphorus removal process (EBPR) was successfully operated in presence of acetate. When glycerol was substituted for acetate in the feed the EBPR process failed. Subsequently waste activated sludge (WAS) from the reactor was removed to an off-line fermenter. The same amount of glycerol was added to the WAS fermenter which led to significant volatile fatty acids (VFA) production. By supplying the system with the VFA-enriched supernatant of the fermentate, biological phosphorus removal was enhanced. It was concluded that, if glycerol was to be used as an external carbon source in EBPR, the effective approach was to ferment glycerol with waste activated sludge.


1997 ◽  
Vol 35 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Andrew Amis Randall ◽  
Larry D. Benefield ◽  
William E. Hill ◽  
Jean-Paul Nicol ◽  
Gerald K. Boman ◽  
...  

Three anaerobic/aerobic sequencing batch reactors (SBRs) were operated for 5 1/2 years. Volatile fatty acids (VFAs) in influent wastewater for two of the SBRs (the Glucose 1 and 2 SBRs) resulted in optimization of enhanced biological phosphorus removal (EBPR), and a bacterial population capable of increasing phosphorus (P) removals in response to increased VFA or P concentration. Another SBR not receiving VFAs (the Starch SBR) showed marginal EBPR and was incapable of either response. All three anaerobic/aerobic sequencing batch reactors (SBRs) showed bounded oscillations in P removal that did not correspond to any operational or environmental change. The oscillations were probably associated with interspecies population dynamics intensified due to the periodic, unsteady-state, nature of the SBR process. The glucose SBRs also showed an additional type of variability associated with EBPR, probably from competition between poly-P and “G” bacteria for readily available substrate (i.e. glucose, VFAs) during anaerobiosis. The predominant bacterial isolates from the glucose SBRs were Pseudomonas and Bacillus while Aeromonas was isolated most frequently from the Starch SBR. The relatively slow growth rate of Pseudomonas may have contributed to the high variability of EBPR observed. Fractal analysis indicated overall variability may have been chaotic, but was inconclusive.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 609-613
Author(s):  
J. Pramanik ◽  
P. L. Trelstad ◽  
J. D. Keasling

Enhanced biological phosphorus removal (EBPR) in wastewater treatment involves metabolic cycling through the biopolymers polyphosphate (polyP), polyhydroxybutyrate (PHB), and glycogen. This cycling is induced through treatment systems that alternate between carbon-rich anaerobic and carbon-poor aerobic reactor basins. While the appearance and disappearance of these biopolymers has been documented, the intracellular pressures that regulate their synthesis and degradation are not well understood. Current models of the EBPR process have examined a limited number of metabolic pathways that are frequently lumped into an even smaller number of “reactions.” This work, on the other hand, uses a stoichiometric model that contains a complete set of the pathways involved in bacterial biomass synthesis and energy production to examine EBPR metabolism. Using the stoichiometric model we were able to analyze the role of EBPR metabolism within the larger context of total cellular metabolism, as well as predict the flux distribution of carbon and energy fluxes throughout the total reaction network. The model was able to predict the consumption of PHB, the degradation of polyP, the uptake of acetate and the release of Pi. It demonstrated the relationship between acetate uptake and Pi release, and the effect of pH on this relationship. The model also allowed analysis of growth metabolism with respect to EBPR.


2012 ◽  
Vol 65 (7) ◽  
pp. 1318-1322 ◽  
Author(s):  
J. Barnard ◽  
D. Houweling ◽  
H. Analla ◽  
M. Steichen

While the mechanism of biological phosphorus removal (BPR) and the need for volatile fatty acids (VFA) have been well researched and documented to the point where it is now possible to design a plant with a very reliable phosphorus removal process using formal flow sheets, BPR is still observed in a number of plants that have no designated anaerobic zone, which was considered essential for phosphorus removal. Some examples are given in this paper. A theory is proposed and then applied to solve problems with a shortage of VFA in the influent of the Henderson NV plant. Mixed liquor was fermented in the anaerobic zone, which resulted in phosphorus removal to very low levels. This paper will discuss some of the background, and some case histories and applications, and present a simple postulation as to the mechanism and efforts at modelling the results.


1984 ◽  
Vol 16 (10-11) ◽  
pp. 173-185 ◽  
Author(s):  
D Malnou ◽  
M Meganck ◽  
G M Faup ◽  
M du Rostu

The biological phosphorus removal phenomenon has been studied in a modified “Phoredox” type pilot plant. The interpretation of the results obtained was facilitated by batch tests on the sludge. The influence of the duration of anaerobiosis, the presence of nitrates and various organic substances in the anaerobic zone were thus studied successively. The results obtained tend to confirm the hypothesis that biological phosphorus removal is due primarily to the bacterial strain Acinetobacter. Microbiological examination of the sludge has revealed the presence of these bacteria and that of acidogenic bacteria producing volatile fatty acids promoting the growth of Acinetobacter. Pure culture tests have confirmed the possibility of a greater phosphorus storage capability of Acinetobacter.


2010 ◽  
Vol 61 (7) ◽  
pp. 1793-1800 ◽  
Author(s):  
Dwight Houweling ◽  
Yves Comeau ◽  
Imre Takács ◽  
Peter Dold

The overall potential for enhanced biological phosphorus removal (EBPR) in the activated sludge process is constrained by the availability of volatile fatty acids (VFAs). The efficiency with which polyphosphate accumulating organisms (PAOs) use these VFAs for P-removal, however, is determined by the stoichiometric ratios governing their anaerobic and aerobic metabolism. While changes in anaerobic stoichiometry due to environmental conditions do affect EBPR performance to a certain degree, model-based analyses indicate that variability in aerobic stoichiometry has the greatest impact. Long-term deterioration in EBPR performance in an experimental SBR system undergoing P-limitation can be predicted as the consequence of competition between PAOs and GAOs. However, the observed rapid decrease in P-release after the change in feed composition is not consistent with a gradual shift in population.


Sign in / Sign up

Export Citation Format

Share Document