Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors

1996 ◽  
Vol 68 (7) ◽  
pp. 1140-1150 ◽  
Author(s):  
Joo-Hwa Tay ◽  
Yue-Gen Yan
2011 ◽  
Vol 71-78 ◽  
pp. 2103-2106
Author(s):  
Ming Yue Zheng ◽  
Ming Xia Zheng ◽  
Kai Jun Wang ◽  
Hai Yan

The performance of upflow anaerobic sludge blanket (UASB) fed with three metabolic intermediate (acetate, ethanol, and propionate) respectively was studied. The degradation of metabolic intermediate were investigated to discuss the reason for propionate inhibition problem in anaerobic treatment. The hydraulic retention time (HRT) in the reactors started with 8.0h.The yield rate of biogas were 237ml/gCOD, 242ml/gCOD, 218ml/gCOD for acetate, ethanol and propionate, respectively when finishing start-up under OLR of 5.0 kgCOD/(m3·d) (HRT=9.6h).The HRT remained constant 9.6h,and the substrate concentration was gradually increased from 1,000 to 16,000mg/L as COD,and the organic loading rates(OLR) was from 3.0 to 40.0 kgCOD/(m3·d).The maximum propionate concentration was 41.6 gHPr-COD/L at the organic loading rate of 43.9 kgCOD/(m3·d) (HRT, 9.6h) as well as acetate and ethanol.


1990 ◽  
Vol 22 (9) ◽  
pp. 167-174 ◽  
Author(s):  
S. S. Cheng ◽  
J. J. Lay ◽  
Y. T. Wei ◽  
M. H. Wu ◽  
G. D. Roam ◽  
...  

During the last two years,twenty-seven bioreactors of upflow anaerobic sludge blanket(UASB) process were constructed and operated well to treat 3,300 m3/day of winery wastewater in six winery plants in Taiwan. Each UASB reactor was installed with an internal filter and a side-armed sludge settler to separate gas-liquid-solid effectively in 127 m3 of reactor volume.These six plants established good performance of UASB process with different organic loadings depending on different characteristics of the winery wastewater. Start-up performance of the modified UASB process in four winery plants was investigated.Bioactivity of anaerobic sludge in each UASB was evaluated by means of Biochemical Methane Potential (BMP)test. Biokinetics of Monod and Haldane models were employed to interpret the different sludge characteristics in terms of gas production rate. Scanning electronic microscopy also showed different morphology of sludge granules in three UASB systems.


1999 ◽  
Vol 40 (8) ◽  
pp. 57-62 ◽  
Author(s):  
A. Pun˜al ◽  
J. M. Lema

The start-up and optimisation of a 380 m3 UASB reactor (Up-flow Anaerobic Sludge Blanket) treating wastewater from a fish-canning factory was carried out. At the beginning of the operation the Organic Loading Rate (OLR) was 1 kg COD/m3·d. Then, the load was gradually increased in steps of 50% OLR until the final capacity of the system (4 kg COD/m3·d) was achieved. Wastewater characteristics were highly dependent on the canned product (mussel, tuna, sardines, etc.). In spite of that, a stable operation working at a hydraulic retention time (HRT) of 2 days was maintained. Total Alkalinity (TA) always presented values higher than 3 g CaCO3/l, while the IA/TA ratio (Intermediate Alalinity/Total Alkalinity) was always maintained lower than 0.3. In order to improve granulation conditions, upward velocities from 0.5 to 0.8 m/h were applied. The highest values caused the washout of non-granulated biomass from the reactor, optimum operation being achieved at an upward velocity of 0.7 m/h.


1994 ◽  
Vol 29 (9) ◽  
pp. 225-229 ◽  
Author(s):  
Alan R. Howgrave-Graham ◽  
Helen A. Isherwood ◽  
F. Mike Wallis

Two full-scale anaerobic digesters, one a clarigester purifying a maize processing wastewater and the other with an upflow anaerobic sludge blanket (UASB) configuration treating brewery effluent, contained well settling, granular sludges efficient in pollutant removal. Due to differences in both digester design and feed composition, the sludges differed in activity and microbial population. The clarigester granules contained a diverse population with a multiformity of hydrolytic, acidogenic and acetogenic bacteria while the predominant methanogens, in order of significance, were Methanothrix and Methanosarcina. These granules did not reconstitute on re-start up following digester shutdown and possible reasons for this are discussed. The UASB granules contained a more uniform population with three major microbial morphotypes, the predominant methanogens being Methanothrix and, possibly, Methanobacterium. In this paper the differences in digester design, feed composition, sludge microbiology and process performance are discussed.


2010 ◽  
Vol 76 (8) ◽  
pp. 2652-2656 ◽  
Author(s):  
Bing-Jie Ni ◽  
Bao-Lan Hu ◽  
Fang Fang ◽  
Wen-Ming Xie ◽  
Boran Kartal ◽  
...  

ABSTRACT Anaerobic ammonium oxidation (anammox) is a promising new process to treat high-strength nitrogenous wastewater. Due to the low growth rate of anaerobic ammonium-oxidizing bacteria, efficient biomass retention is essential for reactor operation. Therefore, we studied the settling ability and community composition of the anaerobic ammonium-oxidizing granules, which were cultivated in an upflow anaerobic sludge blanket (UASB) reactor seeded with aerobic granules. With this seed, the start-up period was less than 160 days at a NH4 +-N removal efficiency of 94% and a loading rate of 0.064 kg N per kg volatile suspended solids per day. The formed granules were bright red and had a high settling velocity (41 to 79 m h−1). Cells and extracellular polymeric substances were evenly distributed over the anaerobic ammonium-oxidizing granules. The high percentage of anaerobic ammonium-oxidizing bacteria in the granules could be visualized by fluorescent in situ hybridization and electron microscopy. The copy numbers of 16S rRNA genes of anaerobic ammonium-oxidizing bacteria in the granules were determined to be 4.6 � 108 copies ml−1. The results of this study could be used for a better design, shorter start-up time, and more stable operation of anammox systems for the treatment of nitrogen-rich wastewaters.


2019 ◽  
Vol 8 (3) ◽  
pp. 1826-1829

In the process of treating wastewaters from different industries by using anaerobic reactor, initially the start-up process is the first step to stabilize the reactor. The aim of this research is to conduct the start-up process and to evaluate the characterization of synthetic organic wastewater using Hybrid up flow Anaerobic Sludge Blanket reactor (HUASBR) with the effective volume of 20L. Initially the reactor was processed with synthetic organic wastewater with COD of 3200 mg/l. The processes were continuously operated with hydraulic retention time of 24 hours for 48 days. The results obtained after the process of stabilization were, COD removal is 87.8%, VFA was Stable for the operating condition, Biogas production was increased as 13.2 l/d during the maximum removal of COD and the pH value of outlet is ranging from 5.5-7.9.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 509-515 ◽  
Author(s):  
Huub J. Gijzen ◽  
Frank Kansiime

The start-up and performance of an Upflow Anaerobic Sludge Blanket (UASB) reactor and a Polyurethane Carrier Reactor (PCR) was investigated under similar operational conditions. The presence of polyurethane cubes as a carrier material in the PCR resulted in fast reactor start-up due to quick immobilization of methanogenic associations. Start-up of the UASB was slower compared to the PCR, which was mainly reflected in a lower biogas production and acetate degradation efficiency. However, when enough biomass had accumulated in the UASB reactor after 15 weeks of operation, the performance of the two reactors was almost the same in terms of biogas production and volatile fatty acids degradation. Efficient VFA degradation (about 90%) and biogas production (5.2 l/l.d) were achieved at an organic loading rate of 13.2 g/l.d) and HRT of 6 h. When hydraulic retention time was subsequently reduced from 6 to 2 h, the performance of the UASB reactor was better than that of the PCR. The inferior performance of the PCR may have been attributed to channelling of the influent in the reactor at high liquid flow rate.


Sign in / Sign up

Export Citation Format

Share Document