CASE HISTORY: OZONE/HYDROXYL ION MIST ODOR CONTROL SYSTEM UTILIZATION ON WASTEWATER COLLECTION SYSTEM AND TREATMENT PLANT ODORS

2002 ◽  
Vol 2002 (5) ◽  
pp. 897-902
Author(s):  
Mark Feltner ◽  
Kelly Lamp-Jones ◽  
Richard Roberts ◽  
Gene Thompson ◽  
John Wade
2012 ◽  
Vol 7 (1) ◽  
Author(s):  
Yanjin Liu ◽  
Giraldo Eugenio

Cultured bacteria addition is one of the technologies used for odor control and FOG (fat, oil, and grease) removal in wastewater collection systems. This study investigated the efficiency of bacterial addition on wastewater odor control by conducting a set of full scale trials in a 60,000 cubic meter per day system for a period of two years. The objectives of this study were: (i) to identify factors that could impact wastewater treatment plant (WWTP) operations due to the effect of bacterial addition in the collection system, (ii) to estimate/understand the level of those impacts, and (iii) to present some interesting findings from the completed case study. The plant operation data before and during the bacterial addition were reviewed. The application of the cultured bacteria presented in the study was found to have significant impacts on the operation of the WWTP in terms of influent biological oxygen demand (BOD) and total suspended solids (TSS) loading, primary settling, sludge production, energy use, dissolved sulfides concentration, and methane production.


2000 ◽  
Vol 2000 (13) ◽  
pp. 166-175
Author(s):  
Randy Schmidt ◽  
Margie Regan ◽  
Randy Grieb ◽  
Jay Witherspoon ◽  
Brett Greene

Author(s):  
A. Figueiredo ◽  
L. Amaral ◽  
J. Pacheco

Abstract The presence of salt water from the Tagus Estuary has been identified in the influent at Barreiro/Moita Wastewater Treatment Plant (WWTP), Portugal. The intrusion occurs throughout damaged sections and direct vectors in the wastewater collection system, during high tide levels, changing the wastewater characteristics and impacting the WWTP process. This study designed models to quantify this problem, enabling more effective countermeasures within the right timing. The proposed models estimate the average volume of salt water and sulfate () load for each high tide period. The laboratory results show strong correlations between the influent electrical conductivity (EC) and percentage of salt water in WWTP inflow (0.9909), and between EC and concentration in WWTP influent (0.9797). The forecast models also show good correlation between the high tide levels with volume of salt water (0.9145) and load (0.9162) entering the system. Considering the total monthly inflow, the highest percentage of salt water registered in WWTP inflow was 3.6%. During high tide periods, critical situations have been assessed with up to 53.9% of salt water in the WWTP inflow, increasing energy consumption and costs in pumping stations.


2012 ◽  
Vol 7 (4) ◽  
Author(s):  
A. Lazić ◽  
V. Larsson ◽  
Å. Nordenborg

The objective of this work is to decrease energy consumption of the aeration system at a mid-size conventional wastewater treatment plant in the south of Sweden where aeration consumes 44% of the total energy consumption of the plant. By designing an energy optimised aeration system (with aeration grids, blowers, controlling valves) and then operating it with a new aeration control system (dissolved oxygen cascade control and most open valve logic) one can save energy. The concept has been tested in full scale by comparing two treatment lines: a reference line (consisting of old fine bubble tube diffusers, old lobe blowers, simple DO control) with a test line (consisting of new Sanitaire Silver Series Low Pressure fine bubble diffusers, a new screw blower and the Flygt aeration control system). Energy savings with the new aeration system measured as Aeration Efficiency was 65%. Furthermore, 13% of the total energy consumption of the whole plant, or 21 000 €/year, could be saved when the tested line was operated with the new aeration system.


1989 ◽  
Vol 21 (10-11) ◽  
pp. 1161-1172 ◽  
Author(s):  
M. Hiraoka ◽  
K. Tsumura

The authors have been developing a hierarchical control system for the activated sludge process which consists of an upper level system controlling long-term seasonal variations, a control system of intermediate level aiming at optimization of the process and a control system of lower level controlling diurnal changes or hourly fluctuations. The control system using the multi-variable statistical model is one of the most appropriate control systems based on the modern control theory, for applying the lower level control of the activated sludge process. This paper introduces our efforts for developing the reliable data acquisition system, the control experiments applying the AR-model, one of the statistical models which were conducted at a pilot plant and present studies on the system identification and control at a field sewage treatment plant.


1988 ◽  
Vol 20 (4-5) ◽  
pp. 227-236
Author(s):  
J. H. Lohmann ◽  
W. F. Garber

The pumping of sewage sludge solids is reviewed in terms of handling high and low viscosity materials with solids concentrations varying from about 4 % to perhaps 50 %. Knowledge of rheological characteristics including thixotropy is necessary in designing pumping systems with sludge solids percentages, volatile content, particle size, abrasives content and temperatures being variables which could change pump types found suitable from facility to facility. The characteristics of a sewage collection system is also important in determining pumping parameters needed in a treatment plant. Solids handling equipment from other industries have made significant contributions to sewage solids pumping in recent years. Included are moyno-type progressing cavity screw-centrifugal, recessed impeller rotation piston positive displacement, and two cylinder piston S-transfer positive displacement pumps. Pumping equipment used in the F.R.G. and in Southern California in the U.S.A. is remarkably similar. These types of pumps offer the possibility of designing optimum solids dewatering and transfer systems.


Sign in / Sign up

Export Citation Format

Share Document