scholarly journals Low-cost and High-throughput RNA-seq Library Preparation for Illumina Sequencing from Plant Tissue

BIO-PROTOCOL ◽  
2020 ◽  
Vol 10 (20) ◽  
Author(s):  
Marta Bjornson ◽  
Kaisa Kajala ◽  
Cyril Zipfel ◽  
Pingtao Ding
2018 ◽  
Author(s):  
Daniel Alpern ◽  
Vincent Gardeux ◽  
Julie Russeil ◽  
Bart Deplancke

ABSTRACTGenome-wide gene expression analyses by RNA sequencing (RNA-seq) have quickly become a standard in molecular biology because of the widespread availability of high throughput sequencing technologies. While powerful, RNA-seq still has several limitations, including the time and cost of library preparation, which makes it difficult to profile many samples simultaneously. To deal with these constraints, the single-cell transcriptomics field has implemented the early multiplexing principle, making the library preparation of hundreds of samples (cells) markedly more affordable. However, the current standard methods for bulk transcriptomics (such as TruSeq Stranded mRNA) remain expensive, and relatively little effort has been invested to develop cheaper, but equally robust methods. Here, we present a novel approach, Bulk RNA Barcoding and sequencing (BRB-seq), that combines the multiplexing-driven cost-effectiveness of a single-cell RNA-seq workflow with the performance of a bulk RNA-seq procedure. BRB-seq produces 3’ enriched cDNA libraries that exhibit similar gene expression quantification to TruSeq and that maintain this quality, also in terms of number of detected differentially expressed genes, even with low quality RNA samples. We show that BRB-seq is about 25 times less expensive than TruSeq, enabling the generation of ready to sequence libraries for up to 192 samples in a day with only 2 hours of hands-on time. We conclude that BRB-seq constitutes a powerful alternative to TruSeq as a standard bulk RNA-seq approach. Moreover, we anticipate that this novel method will eventually replace RT-qPCR-based gene expression screens given its capacity to generate genome-wide transcriptomic data at a cost that is comparable to profiling 4 genes using RT-qPCR.‘SoftwareWe developed a suite of open source tools (BRB-seqTools) to aid with processing BRB-seq data and generating count matrices that are used for further analyses. This suite can perform demultiplexing, generate count/UMI matrices and trim BRB-seq constructs and is freely available at http://github.com/DeplanckeLab/BRB-seqToolsHighlightsRapid (~2h hands on time) and low-cost approach to perform transcriptomics on hundreds of RNA samplesStrand specificity preservedPerformance: number of detected genes is equal to Illumina TruSeq Stranded mRNA at same sequencing depthHigh capacity: low cost allows increasing the number of biological replicatesProduces reliable data even with low quality RNA samples (down to RIN value = 2)Complete user-friendly sequencing data pre-processing and analysis pipeline allowing result acquisition in a day


2018 ◽  
Author(s):  
Mari Kamitani ◽  
Makoto Kashima ◽  
Ayumi Tezuka ◽  
Atsushi J. Nagano

AbstractRNA-Seq is a whole-transcriptome analysis method used to research biological mechanisms and functions; its use in large-scale experiments is limited by costs and labour. In this study, we established a high-throughput and cost effective RNA-Seq library preparation method that did not require mRNA enrichment. The method adds unique index sequences to samples during reverse transcription (RT) that is conducted at a higher temperature (≥62°C) to suppress RT of A-rich sequences in rRNA, and then pools all samples into a single tube. Both single-read and paired end sequencing of libraries is enabled. We found that the pooled RT products contained large amounts of RNA, mainly rRNA, and caused over-estimations of the quantity of DNA, resulting in unstable tagmentation results. Degradation of RNA before tagmentation was necessary for the stable preparation of libraries. We named this protocol low-cost and easy RNA-Seq (Lasy-Seq), and used it to investigate temperature responses in Arabidopsis thaliana. We analysed how sub-ambient temperatures (10–30°C) affected the plant transcriptomes, using time-courses of RNA-Seq from plants grown in randomly fluctuating temperature conditions. Our results suggest that there are diverse mechanisms behind plant temperature responses at different time scales.


BioTechniques ◽  
2011 ◽  
Vol 50 (3) ◽  
pp. 177-181 ◽  
Author(s):  
Steven R. Head ◽  
H.Kiyomi Komori ◽  
G.Traver Hart ◽  
John Shimashita ◽  
Lana Schaffer ◽  
...  

2012 ◽  
Vol 3 ◽  
Author(s):  
Ravi Kumar ◽  
Yasunori Ichihashi ◽  
Seisuke Kimura ◽  
Daniel H. Chitwood ◽  
Lauren R. Headland ◽  
...  

2015 ◽  
Author(s):  
Peter A Combs ◽  
Michael B Eisen

Recently, a number of protocols extending RNA-sequencing to the single-cell regime have been published. However, we were concerned that the additional steps to deal with such minute quantities of input sample would introduce serious biases that would make analysis of the data using existing approaches invalid. In this study, we performed a critical evaluation of several of these low-volume RNA-seq protocols, and found that they performed slightly less well in metrics of interest to us than a more standard protocol, but with at least two orders of magnitude less sample required. We also explored a simple modification to one of these protocols that, for many samples, reduced the cost of library preparation to approximately $20/sample.


Author(s):  
Daniel Schraivogel ◽  
Lars Velten ◽  
Andreas R. Gschwind ◽  
Lars M. Steinmetz

Abstract Here we provide a step-by-step protocol for targeted single-cell RNA-seq and targeted Perturb-seq, as reported in the linked publication Schraivogel et al. Nat Meth 2020. The protocol describes cell preparation using flow cytometry, single-cell droplet formation with 10X Genomics, and targeted 3’ single-cell RNA-seq library preparation for Illumina sequencing.


protocols.io ◽  
2019 ◽  
Author(s):  
Brian Darby ◽  
Russ Bryant ◽  
Abby Keller ◽  
Madison Jochim ◽  
Josephine Moe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document