A low-cost Portable Device to Deliver Smoke, Volatile or Vaporized Substances to Drosophila melanogaster , Useful for Research and/or Educational Assays

BIO-PROTOCOL ◽  
2021 ◽  
Vol 11 (23) ◽  
Author(s):  
MANUELA SANTALLA ◽  
Ivana Gómez ◽  
Carlos Valverde ◽  
Paola Ferrero
2021 ◽  
Vol 252 ◽  
pp. 111386
Author(s):  
Armin Amirazar ◽  
Mona Azarbayjani ◽  
Maziyar Molavi ◽  
Morteza Karami

2020 ◽  
Vol 82 (6) ◽  
pp. 1126-1130
Author(s):  
Carlos Serra ◽  
Luís Silveira ◽  
António Canudo

2018 ◽  
Vol 8 (10) ◽  
pp. 3143-3154 ◽  
Author(s):  
Edwin A. Solares ◽  
Mahul Chakraborty ◽  
Danny E. Miller ◽  
Shannon Kalsow ◽  
Kate Hall ◽  
...  

2018 ◽  
Author(s):  
Edwin A. Solares ◽  
Mahul Chakraborty ◽  
Danny E. Miller ◽  
Shannon Kalsow ◽  
Kate Hall ◽  
...  

ABSTRACTAccurate and comprehensive characterization of genetic variation is essential for deciphering the genetic basis of diseases and other phenotypes. A vast amount of genetic variation stems from large-scale sequence changes arising from the duplication, deletion, inversion, and translocation of sequences. In the past 10 years, high-throughput short reads have greatly expanded our ability to assay sequence variation due to single nucleotide polymorphisms. However, a recent de novo assembly of a second Drosophila melanogaster reference genome has revealed that short read genotyping methods miss hundreds of structural variants, including those affecting phenotypes. While genomes assembled using high-coverage long reads can achieve high levels of contiguity and completeness, concerns about cost, errors, and low yield have limited widespread adoption of such sequencing approaches. Here we resequenced the reference strain of D. melanogaster (ISO1) on a single Oxford Nanopore MinION flow cell run for 24 hours. Using only reads longer than 1 kb or with at least 30x coverage, we assembled a highly contiguous de novo genome. The addition of inexpensive paired reads and subsequent scaffolding using an optical map technology achieved an assembly with completeness and contiguity comparable to the D. melanogaster reference assembly. Comparison of our assembly to the reference assembly of ISO1 uncovered a number of structural variants (SVs), including novel LTR transposable element insertions and duplications affecting genes with developmental, behavioral, and metabolic functions. Collectively, these SVs provide a snapshot of the dynamics of genome evolution. Furthermore, our assembly and comparison to the D. melanogaster reference genome demonstrates that high-quality de novo assembly of reference genomes and comprehensive variant discovery using such assemblies are now possible by a single lab for under $1,000 (USD).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ilenia Meloni ◽  
Divya Sachidanandan ◽  
Andreas S. Thum ◽  
Robert J. Kittel ◽  
Caroline Murawski

Abstract Invertebrates such as Drosophila melanogaster have proven to be a valuable model organism for studies of the nervous system. In order to control neuronal activity, optogenetics has evolved as a powerful technique enabling non-invasive stimulation using light. This requires light sources that can deliver patterns of light with high temporal and spatial precision. Currently employed light sources for stimulation of small invertebrates, however, are either limited in spatial resolution or require sophisticated and bulky equipment. In this work, we used smartphone displays for optogenetic control of Drosophila melanogaster. We developed an open-source smartphone app that allows time-dependent display of light patterns and used this to activate and inhibit different neuronal populations in both larvae and adult flies. Characteristic behavioural responses were observed depending on the displayed colour and brightness and in agreement with the activation spectra and light sensitivity of the used channelrhodopsins. By displaying patterns of light, we constrained larval movement and were able to guide larvae on the display. Our method serves as a low-cost high-resolution testbench for optogenetic experiments using small invertebrate species and is particularly appealing to application in neuroscience teaching labs.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5982
Author(s):  
Vítor Leal ◽  
Raul Teixeira

This work introduces the concept of a new Portable Device for Indoor Temperature Stabilization (PoDIT), to be considered as a low-cost, quick and easy to implement remediation strategy when, for social, economic, or technical reasons, the improvement of the building envelope and/or the adoption of air conditioning are not possible. The main goal is to attenuate the maximum indoor temperature during summer and/or heat waves. The system, which is modular, consists of a certain mass of encaged phase change material (PCM) that stays indoors during the daytime and is transported to the outdoors (e.g., a balcony) during the night to discharge the heat accumulated during the daytime. Both natural convection and forced convection variants were considered. The results showed that, in the configurations and for the reference room and weather considered, the adopting 4 modules of the device can lead to reductions in the maximum room air temperature close to 3 °C, with natural convection. Adopting a fan to impose forced convection at the surfaces of the device can lead to temperature attenuations in excess of 4 °C, as it ensures full solid–liquid commuting and therefore optimal use of the PCM thermal storage capability.


2020 ◽  
Author(s):  
Matthew Adams ◽  
Jakob McBroome ◽  
Nicholas Maurer ◽  
Evan Pepper-Tunick ◽  
Nedda F Saremi ◽  
...  

Abstract A high quality genome assembly is a vital first step for the study of an organism. Recent advances in technology have made the creation of high quality chromosome scale assemblies feasible and low cost. However, the amount of input DNA needed for an assembly project can be a limiting factor for small organisms or precious samples. Here we demonstrate the feasibility of creating a chromosome scale assembly using a hybrid method for a low input sample, a single outbred Drosophila melanogaster. Our approach combines an Illumina shotgun library, Oxford nanopore long reads, and chromosome conformation capture for long range scaffolding. This single fly genome assembly has a N50 of 26 Mb, a length that encompasses entire chromosome arms, contains 95% of expected single copy orthologs, and a nearly complete assembly of this individual's Wolbachia endosymbiont. The methods described here enable the accurate and complete assembly of genomes from small, field collected organisms as well as precious clinical samples.


Sign in / Sign up

Export Citation Format

Share Document