Method of exact position fix of mobile objects by means of RFID systems and its application

Author(s):  
B. G. Mayorov

The features of the author’s patented method for determining the coordinates of moving objects using radio frequency identification tags (RFID tags) are studied, in which the coordinates of their constant position on the object’s path are recorded. On a moving object (personnel, warehouse forklift, car, etc.), RFID tag readers are installed that interact with RFID tags installed on the ground and read their coordinates. Thereby, the coordinates of a moving object on the track are accurately and quickly determined. A methodology for choosing an implementation option is proposed and examples of applying the obtained results in mines, warehouses, on automobile routes, for civil and dual-use systems are given. The necessity of using passive RFID tags and a circularly polarized reader antenna is established. The resulting solution has no real restrictions on the speed of moving objects.

Author(s):  
Pablo Picazo-Sanchez ◽  
Lara Ortiz-Martin ◽  
Pedro Peris-Lopez ◽  
Julio C. Hernandez-Castro

Radio Frequency Identification (RFID) is a common technology for identifying objects, animals, or people. The main form of barcode-type RFID device is known as an Electronic Product Code (EPC) and the most popular standard for passive RFID tags is Class-1 Generation-2. In this technology, the information transmitted between devices is through the air, therefore adversaries can eavesdrop these messages passed on the insecure radio channel and finally, the security of the system can be compromised. In this chapter, the authors analyze the security of EPC Class-1 Generation-2 standard, showing its security weaknesses and presenting some possible countermeasures.


2016 ◽  
Vol 29 (2) ◽  
pp. 236-247 ◽  
Author(s):  
Kaori Kusuda ◽  
Kazuhiko Yamashita ◽  
Akiko Ohnishi ◽  
Kiyohito Tanaka ◽  
Masaru Komino ◽  
...  

Purpose – To prevent malpractices, medical staff has adopted inventory time-outs and/or checklists. Accurate inventory and maintenance of surgical instruments decreases the risk of operating room miscounting and malfunction. In our previous study, an individual management of surgical instruments was accomplished using Radio Frequency Identification (RFID) tags. The purpose of this paper is to evaluate a new management method of RFID-tagged instruments. Design/methodology/approach – The management system of RFID-tagged surgical instruments was used for 27 months in clinical areas. In total, 13 study participants assembled surgical trays in the central sterile supply department. Findings – While using the management system, trays were assembled 94 times. During this period, no assembly errors occurred. An instrument malfunction had occurred after the 19th, 56th, and 73th uses, no malfunction caused by the RFID tags, and usage history had been recorded. Additionally, the time it took to assemble surgical trays was recorded, and the long-term usability of the management system was evaluated. Originality/value – The system could record the number of uses and the defective history of each surgical instrument. In addition, the history of the frequency of instruments being transferred from one tray to another was recorded. The results suggest that our system can be used to manage instruments safely. Additionally, the management system was acquired of the learning effect and the usability on daily maintenance. This finding suggests that the management system examined here ensures surgical instrument and tray assembly quality.


Author(s):  
Annalisa Milella ◽  
Paolo Vanadia ◽  
Grazia Cicirelli ◽  
Arcangelo Distante

In this paper, the use of passive Radio Frequency Identification (RFID) as a support technology for mobile robot navigation and environment mapping is investigated. A novel method for localizing passive RFID tags in a geometric map of the environment using fuzzy logic is, first, described. Then, it is shown how a mobile robot equipped with RF antennas, RF reader, and a laser range finder can use such map for localization and path planning. Experimental results from tests performed in our institute suggest that the proposed approach is accurate in mapping RFID tags and can be effectively used for vehicle navigation in indoor environments.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Hugo Landaluce ◽  
Laura Arjona ◽  
Asier Perallos ◽  
Lars Bengtsson ◽  
Nikola Cmiljanic

One of the main existing problems in Radio Frequency Identification (RFID) technology is the tag collision problem. When several tags try to respond to the reader under the coverage of the same reader antenna their messages collide, degrading bandwidth and increasing the number of transmitted bits. An anticollision protocol, based on the classical Binary Tree (BT) protocol, with the ability to decrease the number of bits transmitted by the reader and the tags, is proposed here. Simulations results show that the proposed protocol increases the throughput with respect to other recent state-of-the-art protocols while keeping a low energy consumption of a passive RFID system.


2009 ◽  
Vol 20 (04) ◽  
pp. 619-632
Author(s):  
JAHNG HYON PARK ◽  
YONG-KWAN JI

This paper presents methods of localization of mobile systems using recent Radio Frequency Identification (RFID) technology. We consider an indoor environment where RFID tags are implanted along the wall or in objects in the room. If the absolute position and orientation of a tag are read by an RF reader, a mobile system can estimate its location using the information saved in the tags. A reader-tag model is obtained through experiments in order to derive relative positions and orientations between an antenna and an RFID tag. To estimate the location, we propose two estimation methods. One uses a single RFID tag and the other uses multi-RFID tags. Experimental results show that the proposed methods can provide good performance for mobile system localization in an indoor environment.


2017 ◽  
pp. 641-661
Author(s):  
Peter J. Hawrylak ◽  
Chris Hart

Radio Frequency Identification (RFID) technology enables wireless communication between a RFID reader and a RFID tag. One type, passive RFID tags, need no battery, being powered from the RFID reader's radio frequency signal. Passive RFID tags can support memories that can be used to store portions of the patient's medical history. One form factor for passive RFID tags is an employee ID (used for wireless access) or credit card form factor. This form factor allows the patient to carry their medical information with them. RFID benefits include providing information to Emergency Medical Technicians (EMTs), maintaining a patient's vaccination history and providing emergency contact information, all in a clear and unmistakable format. This simplifies information exchange during patient transfers, a cause of many preventable medical mistakes and errors. Cheap and simple systems, such as the one presented in this chapter, can reduce stress and prevent possible errors. Such systems with an intuitive human-machine interface can reduce the duration of a patient visit throughput. This system can prevent simple errors such as the administration of the wrong drug, dose, or drug omission, which is a major issue in hospitals. This requires that information be stored in a standardised manner, with limited healthcare provider access and use to protect patient privacy. This chapter explores the use of passive RFID tags to store medical information about a patient, with specific focus on storage of a child's vaccination history and safety.


Author(s):  
Mohamed Hadi Habaebi ◽  
Rashid Khamis Omar ◽  
Md Rafiqul Islam

<p class="AEEEAbstract">Radio Frequency Identification (RFID) is an information exchange technology based on RF communication. It provides solution to track and localize mobile objects in the indoor environment. Localization of mobile objects in an indoor environment garnered a significant attention due to the variety of applications needing higher degree of localization accuracy. RSS-based localization techniques are the major tools for tracking applications due to their simplicity. In this paper, a trilateration method for indoor localization is proposed. This method provides a solution for the drone tracking problem by collecting the RSS values between RFID tagged drone and reader, and estimate its location. The localization method is implemented in MATLAB by multiple readers; 4 RFID readers and 8 RFID readers. The performance of the localization method is also compared with other RFID localization previously reported in the literature. The simulation results in the case of 8 RFID readers demonstrate more accurate results than 4 RFID readers by minimizing the localization error from 0.84606 to 0.40079m. The results also indicate an improved localization performance of tracking a tagged drone in indoor environment by 42.8% when 8RFID readers are placed in the localization area.</p>


2021 ◽  
Vol 2015 (1) ◽  
pp. 012092
Author(s):  
Anna Mikhailovskaya ◽  
Ildar Yusupov ◽  
Dmitry Dobrykh ◽  
Sergey Krasikov ◽  
Diana Shakirova ◽  
...  

Abstract Radio frequency identification (RFID) is one of the commonly used approaches to a short-range wireless data exchange. Numerous passive RFID tags are available on the market, and in a vast majority of cases, their designs are based on flat meandered dipole architectures. However, besides technological advantages, those realizations suffer from polarization mismatch issues and limited spatial sectors, from which flat tags can be interrogated. Here, we demonstrate and analyze a miniature omnidirectional tag accessible from all 4π stereo angles with a commercial RFID reader.


Author(s):  
Peter J. Hawrylak ◽  
Chris Hart

Radio Frequency Identification (RFID) technology enables wireless communication between a RFID reader and a RFID tag. One type, passive RFID tags, need no battery, being powered from the RFID reader's radio frequency signal. Passive RFID tags can support memories that can be used to store portions of the patient's medical history. One form factor for passive RFID tags is an employee ID (used for wireless access) or credit card form factor. This form factor allows the patient to carry their medical information with them. RFID benefits include providing information to Emergency Medical Technicians (EMTs), maintaining a patient's vaccination history and providing emergency contact information, all in a clear and unmistakable format. This simplifies information exchange during patient transfers, a cause of many preventable medical mistakes and errors. Cheap and simple systems, such as the one presented in this chapter, can reduce stress and prevent possible errors. Such systems with an intuitive human-machine interface can reduce the duration of a patient visit throughput. This system can prevent simple errors such as the administration of the wrong drug, dose, or drug omission, which is a major issue in hospitals. This requires that information be stored in a standardised manner, with limited healthcare provider access and use to protect patient privacy. This chapter explores the use of passive RFID tags to store medical information about a patient, with specific focus on storage of a child's vaccination history and safety.


2007 ◽  
Vol 2007 ◽  
pp. 1-9 ◽  
Author(s):  
Yimin Zhang ◽  
Moeness G. Amin ◽  
Shashank Kaushik

Radio frequency identification (RFID) is poised for growth as businesses and governments explore applications implementing RFID. The RFID technology will continue to evolve to meet new demands for human and target location and tracking. In particular, there are increasing needs to locate and track multiple RFID-tagged items that are closely spaced. As a result, localization and tracking techniques with higher accuracy yet low implementation complexity are required. This paper examines the applicability of direction-of-arrival (DOA) estimation methods to the localization and tracking problems of passive RFID tags. Different scenarios of stationary and moving targets are considered. It is shown through performance analysis and simulation results that simple DOA estimation methods can be used to provide satisfactory localization performance.


Sign in / Sign up

Export Citation Format

Share Document