On skinny stationary subsets of

2013 ◽  
Vol 78 (2) ◽  
pp. 667-680 ◽  
Author(s):  
Yo Matsubara ◽  
Toshimichi Usuba

AbstractWe introduce the notion of skinniness for subsets of and its variants, namely skinnier and skinniest. We show that under some cardinal arithmetical assumptions, precipitousness or 2λ-saturation of NSκλ ∣ X, where NSκλ denotes the non-stationary ideal over , implies the existence of a skinny stationary subset of X. We also show that if λ is a singular cardinal, then there is no skinnier stationary subset of . Furthermore, if λ is a strong limit singular cardinal, there is no skinny stationary subset of . Combining these results, we show that if λ is a strong limit singular cardinal, then NSκλ ∣ X can satisfy neither precipitousness nor 2λ-saturation for every stationary X ⊆ . We also indicate that , where , is equivalent to the existence of a skinnier (or skinniest) stationary subset of under some cardinal arithmetical hypotheses.

2002 ◽  
Vol 02 (01) ◽  
pp. 81-89 ◽  
Author(s):  
YO MATSUBARA ◽  
SAHARON SHELAH

We prove that if λ is a strong limit singular cardinal and κ a regular uncountable cardinal < λ, then NSκλ, the non-stationary ideal over [Formula: see text], is nowhere precipitous. We also show that under the same hypothesis every stationary subset of [Formula: see text] can be partitioned into λκ disjoint stationary sets.


2021 ◽  
Vol 27 (2) ◽  
pp. 221-222
Author(s):  
Alejandro Poveda

AbstractThe dissertation under comment is a contribution to the area of Set Theory concerned with the interactions between the method of Forcing and the so-called Large Cardinal axioms.The dissertation is divided into two thematic blocks. In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopěnka’s Principle (Part I). In turn, Block II is devoted to the investigation of some problems arising from Singular Cardinal Combinatorics (Part II and Part III).We commence Part I by investigating the Identity Crisis phenomenon in the region comprised between the first supercompact cardinal and Vopěnka’s Principle. As a result, we generalize Magidor’s classical theorems [2] to this higher region of the large-cardinal hierarchy. Also, our analysis allows to settle all the questions that were left open in [1]. Finally, we conclude Part I by presenting a general theory of preservation of $C^{(n)}$ -extendible cardinals under class forcing iterations. From this analysis we derive several applications. For instance, our arguments are used to show that an extendible cardinal is consistent with “ $(\lambda ^{+\omega })^{\mathrm {HOD}}<\lambda ^+$ , for every regular cardinal $\lambda $ .” In particular, if Woodin’s HOD Conjecture holds, and therefore it is provable in ZFC + “There exists an extendible cardinal” that above the first extendible cardinal every singular cardinal $\lambda $ is singular in HOD and $(\lambda ^+)^{\textrm {{HOD}}}=\lambda ^+$ , there may still be no agreement at all between V and HOD about successors of regular cardinals.In Part II and Part III we analyse the relationship between the Singular Cardinal Hypothesis (SCH) with other relevant combinatorial principles at the level of successors of singular cardinals. Two of these are the Tree Property and the Reflection of Stationary sets, which are central in Infinite Combinatorics.Specifically, Part II is devoted to prove the consistency of the Tree Property at both $\kappa ^+$ and $\kappa ^{++}$ , whenever $\kappa $ is a strong limit singular cardinal witnessing an arbitrary failure of the SCH. This generalizes the main result of [3] in two senses: it allows arbitrary cofinalities for $\kappa $ and arbitrary failures for the SCH.In the last part of the dissertation (Part III) we introduce the notion of $\Sigma $ -Prikry forcing. This new concept allows an abstract and uniform approach to the theory of Prikry-type forcings and encompasses several classical examples of Prikry-type forcing notions, such as the classical Prikry forcing, the Gitik-Sharon poset, or the Extender Based Prikry forcing, among many others.Our motivation in this part of the dissertation is to prove an iteration theorem at the level of the successor of a singular cardinal. Specifically, we aim for a theorem asserting that every $\kappa ^{++}$ -length iteration with support of size $\leq \kappa $ has the $\kappa ^{++}$ -cc, provided the iterates belong to a relevant class of $\kappa ^{++}$ -cc forcings. While there are a myriad of works on this vein for regular cardinals, this contrasts with the dearth of investigations in the parallel context of singular cardinals. Our main contribution is the proof that such a result is available whenever the class of forcings under consideration is the family of $\Sigma $ -Prikry forcings. Finally, and as an application, we prove that it is consistent—modulo large cardinals—the existence of a strong limit cardinal $\kappa $ with countable cofinality such that $\mathrm {SCH}_\kappa $ fails and every finite family of stationary subsets of $\kappa ^+$ reflects simultaneously.


2009 ◽  
Vol 09 (01) ◽  
pp. 139-157 ◽  
Author(s):  
ITAY NEEMAN

The tree property at κ+ states that there are no Aronszajn trees on κ+, or, equivalently, that every κ+ tree has a cofinal branch. For singular strong limit cardinals κ, there is tension between the tree property at κ+ and failure of the singular cardinal hypothesis at κ; the former is typically the result of the presence of strongly compact cardinals in the background, and the latter is impossible above strongly compacts. In this paper, we reconcile the two. We prove from large cardinals that the tree property at κ+ is consistent with failure of the singular cardinal hypothesis at κ.


2021 ◽  
pp. 2150019
Author(s):  
Alejandro Poveda ◽  
Assaf Rinot ◽  
Dima Sinapova

In Part I of this series [5], we introduced a class of notions of forcing which we call [Formula: see text]-Prikry, and showed that many of the known Prikry-type notions of forcing that centers around singular cardinals of countable cofinality are [Formula: see text]-Prikry. We proved that given a [Formula: see text]-Prikry poset [Formula: see text] and a [Formula: see text]-name for a nonreflecting stationary set [Formula: see text], there exists a corresponding [Formula: see text]-Prikry poset that projects to [Formula: see text] and kills the stationarity of [Formula: see text]. In this paper, we develop a general scheme for iterating [Formula: see text]-Prikry posets, as well as verify that the Extender-based Prikry forcing is [Formula: see text]-Prikry. As an application, we blow-up the power of a countable limit of Laver-indestructible supercompact cardinals, and then iteratively kill all nonreflecting stationary subsets of its successor. This yields a model in which the singular cardinal hypothesis fails and simultaneous reflection of finite families of stationary sets holds.


1972 ◽  
Vol 37 (2) ◽  
pp. 247-267 ◽  
Author(s):  
Saharon Shelah

We prove here theorems of the form: if T has a model M in which P1(M) is κ1-like ordered, P2(M) is κ2-like ordered …, and Q1(M) is of power λ1, …, then T has a model N in which P1(M) is κ1′-like ordered …, Q1(N) is of power λ1′, …. (In this article κ is a strong-limit singular cardinal, and κ′ is a singular cardinal.)We also sometimes add the condition that M, N omits some types. The results are seemingly the best possible, i.e. according to our knowledge about n-cardinal problems (or, more precisely, a certain variant of them).


2003 ◽  
Vol 68 (3) ◽  
pp. 837-845 ◽  
Author(s):  
John Krueger

AbstractWe strengthen a theorem of Gitik and Shelah [6] by showing that if κ is either weakly inaccessible or the successor of a singular cardinal and S is a stationary subset of κ such that NSκ↾S is saturated then κ ∖ S is fat. Using this theorem we derive some results about the existence of fat stationary sets. We then strengthen some results due to Baumgartner and Taylor [2], showing in particular that if I is a λ+++-saturated normal ideal on Pκλ then the conditions of being λ+-preserving, weakly presaturated, and presaturated are equivalent for I.


1990 ◽  
Vol 55 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Saharon Shelah

For e.g. λ = μ+, μ regular, λ larger than the continuum, we prove a strong nonpartition result (stronger than λ → [λ; λ]2). As a consequence, the product of two topological spaces of cellularity <λ may have cellularity λ, or, in equivalent formulation, the product of two λ-c.c. Boolean algebras may lack the λ-c.c. Also λ-S-spaces and λ-L-spaces exist. In fact we deal not with successors of regular λ but with regular λ above the continuum which has a nonreflecting stationary subset of ordinals with uncountable cofinalities; sometimes we require λ to be not strong limit.The paper is self-contained. On the nonpartition results see the closely related papers of Todorčević [T1], Shelah [Sh276] and [Sh261], and Shelah and Steprans [ShSt1].On the cellularity of products see Todorčević [T2] and [T3], where such results were obtained for (e.g.) cf and ; the class of cardinals he gets is quite disjoint from ours. In [Sh282] such results were obtained for more successors of singulars (mainly λ+, λ > 2cf λ). Also, concerning S and L spaces, Todorčević gets existence.Todorčević's work on cardinals like relies on [Sh68] (see more in [ShA2, Chapter XIII]) (the scales appearing in the proof of ). The problem was stressed in a preliminary version of the surveys of Juhasz and Monk. We give a detailed proof for one strong nonpartition theorem (1.1) and then give various strengthenings. We then use 1.10 to get the consequences (in 1.11 and 1.12).


1997 ◽  
Vol 62 (1) ◽  
pp. 117-122 ◽  
Author(s):  
Douglas Burke ◽  
Yo Matsubara

It is well known that if σ is a strongly compact cardinal and λ a regular cardinal ≥ σ, then for every stationary subset X of {α < λ: cof (α) = ω} there is some β < λ such that X ⋂ β is stationary in β. In fact the existence of a uniform, countably complete ultrafilter over λ is sufficient to prove the same conclusion about stationary subsets of {α < λ: cof (α) = ω}. See [13] or [10]. By analyzing the proof of this theorem as presented in [10], we realized the same conclusion will follow from the existence of a certain ideal, not necessarily prime, on . Throughout we will assume that σ is a regular uncountable cardinal and use the word “ideal” to mean fine ideal.


2003 ◽  
Vol 68 (2) ◽  
pp. 366-388 ◽  
Author(s):  
Mirna Džamonja ◽  
Saharon Shelah

AbstractThe paper is concerned with the existence of a universal graph at the successor of a strong limit singular μ of cofinality ℵ0. Starting from the assumption of the existence of a supercompact cardinal, a model is built in which for some such μ there are μ++ graphs on μ+ that taken jointly are universal for the graphs on μ+, while .The paper also addresses the general problem of obtaining a framework for consistency results at the successor of a singular strong limit starting from the assumption that a supercompact cardinal κ exists. The result on the existence of universal graphs is obtained as a specific application of a more general method.


2012 ◽  
Vol 77 (4) ◽  
pp. 1325-1338 ◽  
Author(s):  
Todd Eisworth

AbstractWe prove that ifholds for a singular cardinalμ, then any collection of fewer than cf(μ) stationary subsets ofμ+must reflect simultaneously.


Sign in / Sign up

Export Citation Format

Share Document