Universally Baire sets and definable well-orderings of the reals

2003 ◽  
Vol 68 (4) ◽  
pp. 1065-1081
Author(s):  
SY D. Friedman ◽  
Ralf Schindler

AbstractLet n ≥ 3 be an integer. We show that it is consistent (relative to the consistency of n − 2 strong cardinals) that every Σ1n-set of reals is universally Baire yet there is a (lightface) projective well-ordering of the reals. The proof uses “David's trick” in the presence of inner models with strong cardinals.

2011 ◽  
Vol 76 (2) ◽  
pp. 719-728
Author(s):  
P. D. Welch

AbstractWe give limits defined in terms of abstract pointclasses of the amount of determinacy available in certain canonical inner models involving strong cardinals. We show for example:Theorem A. Det(-IND) ⇒ there exists an inner model with a strong cardinal.Theorem B. Det(AQI) ⇒ there exist type-l mice and hence inner models with proper classes of strong cardinals.where -IND(AQI) is the pointclass of boldface -inductive (respectively arithmetically quasi-inductive) sets of reals.


1999 ◽  
Vol 64 (3) ◽  
pp. 963-983 ◽  
Author(s):  
Paul Corazza

AbstractVersions of Laver sequences are known to exist for supercompact and strong cardinals. Assuming very strong axioms of infinity, Laver sequences can be constructed for virtually any globally defined large cardinal not weaker than a strong cardinal; indeed, under strong hypotheses. Laver sequences can be constructed for virtually any regular class of embeddings. We show here that if there is a regular class of embeddings with critical point κ, and there is an inaccessible above κ, then it is consistent for there to be a regular class that admits no Laver sequence. We also show that extendible cardinals are Laver-generating, i.e., that assuming only that κ is extendible, there is an extendible Laver sequence at κ. We use the method of proof to answer a question about Laver-closure of extendible cardinals at inaccessibles. Finally, we consider Laver sequences for super-almost-huge cardinals. Assuming slightly more than super-almost-hugeness, we show that there are super-almost-huge Laver sequences, improving the previously known upper bound for such Laver sequences. We also describe conditions under which the canonical construction of a Laver sequence fails for super-almost-huge cardinals.


2016 ◽  
Vol 81 (3) ◽  
pp. 972-996 ◽  
Author(s):  
GUNTER FUCHS ◽  
RALF SCHINDLER

AbstractOne of the basic concepts of set theoretic geology is the mantle of a model of set theory V: it is the intersection of all grounds of V, that is, of all inner models M of V such that V is a set-forcing extension of M. The main theme of the present paper is to identify situations in which the mantle turns out to be a fine structural extender model. The first main result is that this is the case when the universe is constructible from a set and there is an inner model with a Woodin cardinal. The second situation like that arises if L[E] is an extender model that is iterable in V but not internally iterable, as guided by P-constructions, L[E] has no strong cardinal, and the extender sequence E is ordinal definable in L[E] and its forcing extensions by collapsing a cutpoint to ω (in an appropriate sense). The third main result concerns the Solid Core of a model of set theory. This is the union of all sets that are constructible from a set of ordinals that cannot be added by set-forcing to an inner model. The main result here is that if there is an inner model with a Woodin cardinal, then the solid core is a fine-structural extender model.


2005 ◽  
Vol 45 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Peter Koepke ◽  
Ralf Schindler
Keyword(s):  

2020 ◽  
Vol 171 (9) ◽  
pp. 102826
Author(s):  
Farmer Schlutzenberg
Keyword(s):  

1972 ◽  
Vol 37 (3) ◽  
pp. 569-571
Author(s):  
Andreas Blass

The method of inner models, used by Gödel to prove the (relative) consistency of the axiom of choice and the generalized continuum hypothesis [2], cannot be used to prove the (relative) consistency of any statement which contradicts the axiom of constructibility (V = L). A more precise statement of this well-known fact is:(*)For any formula θ(x) of the language of ZF, there is an axiom α of the theory ZF + V ≠ L such that the relativization α(θ) is not a theorem of ZF.On p. 108 of [1], Cohen gives a proof of (*) in ZF assuming the existence of a standard model of ZF, and he indicates that this assumption can be avoided. However, (*) is not a theorem of ZF (unless ZF is inconsistent), because (*) trivially implies the consistency of ZF. What assumptions are needed to prove (*)? We know that the existence of a standard model implies (*) which, in turn, implies the consistency of ZF. Is either implication reversible?From our main result, it will follow that, if the converse of the first implication is provable in ZF, then ZF has no standard model, and if the converse of the second implication is provable in ZF, then so is the inconsistency of ZF. Thus, it is quite improbable that either converse is provable in ZF.


1994 ◽  
Vol 59 (2) ◽  
pp. 461-472
Author(s):  
Garvin Melles

Mathematicians have one over on the physicists in that they already have a unified theory of mathematics, namely, set theory. Unfortunately, the plethora of independence results since the invention of forcing has taken away some of the luster of set theory in the eyes of many mathematicians. Will man's knowledge of mathematical truth be forever limited to those theorems derivable from the standard axioms of set theory, ZFC? This author does not think so, he feels that set theorists' intuition about the universe of sets is stronger than ZFC. Here in this paper, using part of this intuition, we introduce some axiom schemata which we feel are very natural candidates for being considered as part of the axioms of set theory. These schemata assert the existence of many generics over simple inner models. The main purpose of this article is to present arguments for why the assertion of the existence of such generics belongs to the axioms of set theory.Our central guiding principle in justifying the axioms is what Maddy called the rule of thumb maximize in her survey article on the axioms of set theory, [8] and [9]. More specifically, our intuition conforms with that expressed by Mathias in his article What is Maclane Missing? challenging Mac Lane's view of set theory.


1997 ◽  
Vol 62 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Jindřich Zapletal

AbstractWe study a generalization of the splitting number s to uncountable cardinals. We prove that 𝔰(κ) > κ+ for a regular uncountable cardinal κ implies the existence of inner models with measurables of high Mitchell order. We prove that the assumption 𝔰(ℵω) > ℵω+1 has a considerable large cardinal strength as well.


Sign in / Sign up

Export Citation Format

Share Document