Natural internal forcing schemata extending ZFC: Truth in the universe?

1994 ◽  
Vol 59 (2) ◽  
pp. 461-472
Author(s):  
Garvin Melles

Mathematicians have one over on the physicists in that they already have a unified theory of mathematics, namely, set theory. Unfortunately, the plethora of independence results since the invention of forcing has taken away some of the luster of set theory in the eyes of many mathematicians. Will man's knowledge of mathematical truth be forever limited to those theorems derivable from the standard axioms of set theory, ZFC? This author does not think so, he feels that set theorists' intuition about the universe of sets is stronger than ZFC. Here in this paper, using part of this intuition, we introduce some axiom schemata which we feel are very natural candidates for being considered as part of the axioms of set theory. These schemata assert the existence of many generics over simple inner models. The main purpose of this article is to present arguments for why the assertion of the existence of such generics belongs to the axioms of set theory.Our central guiding principle in justifying the axioms is what Maddy called the rule of thumb maximize in her survey article on the axioms of set theory, [8] and [9]. More specifically, our intuition conforms with that expressed by Mathias in his article What is Maclane Missing? challenging Mac Lane's view of set theory.

Author(s):  
Colin McLarty

A ‘category’, in the mathematical sense, is a universe of structures and transformations. Category theory treats such a universe simply in terms of the network of transformations. For example, categorical set theory deals with the universe of sets and functions without saying what is in any set, or what any function ‘does to’ anything in its domain; it only talks about the patterns of functions that occur between sets. This stress on patterns of functions originally served to clarify certain working techniques in topology. Grothendieck extended those techniques to number theory, in part by defining a kind of category which could itself represent a space. He called such a category a ‘topos’. It turned out that a topos could also be seen as a category rich enough to do all the usual constructions of set-theoretic mathematics, but that may get very different results from standard set theory.


2016 ◽  
Vol 81 (3) ◽  
pp. 972-996 ◽  
Author(s):  
GUNTER FUCHS ◽  
RALF SCHINDLER

AbstractOne of the basic concepts of set theoretic geology is the mantle of a model of set theory V: it is the intersection of all grounds of V, that is, of all inner models M of V such that V is a set-forcing extension of M. The main theme of the present paper is to identify situations in which the mantle turns out to be a fine structural extender model. The first main result is that this is the case when the universe is constructible from a set and there is an inner model with a Woodin cardinal. The second situation like that arises if L[E] is an extender model that is iterable in V but not internally iterable, as guided by P-constructions, L[E] has no strong cardinal, and the extender sequence E is ordinal definable in L[E] and its forcing extensions by collapsing a cutpoint to ω (in an appropriate sense). The third main result concerns the Solid Core of a model of set theory. This is the union of all sets that are constructible from a set of ordinals that cannot be added by set-forcing to an inner model. The main result here is that if there is an inner model with a Woodin cardinal, then the solid core is a fine-structural extender model.


1953 ◽  
Vol 18 (2) ◽  
pp. 145-167 ◽  
Author(s):  
J. C. Shepherdson

In this third and last paper on inner models we consider some of the inherent limitations of the method of using inner models of the type defined in 1.2 for the proof of consistency results for the particular system of set theory under consideration. Roughly speaking this limitation may be described by saying that practically no further consistency results can be obtained by the construction of models satisfying the conditions of theorem 1.5, i.e., conditions 1.31, 1.32, 1.33, 1.51, viz.:This applies in particular to the ‘complete models’ defined in 1.4. Before going on to a precise statement of these limitations we shall consider now the theorem on which they depend. This is concerned with a particular type of complete model examples of which we call “proper complete models”; they are those complete models which are essentially interior to the universe, those whose classes are sets of the universe constituting a class thereof, i.e., those for which the following proposition is true:The main theorem of this paper is that the statement that there are no models of this kind can be expressed formally in the same way as the axioms A, B, C and furthermore it can be proved that if the axiom system A, B, C is consistent then so is the system consisting of axioms A, B, C, plus this new hypothesis that there exist no proper complete models. When combined with the axiom ‘V = L’ introduced by Gödel in (1) this new hypothesis yields a system in which any normal complete model which exists has for its universal class V, the universal class of the original system.


2002 ◽  
Vol 02 (01) ◽  
pp. 91-112 ◽  
Author(s):  
JEREMY AVIGAD

The notion of a function from ℕ to ℕ defined by recursion on ordinal notations is fundamental in proof theory. Here this notion is generalized to functions on the universe of sets, using notations for well orderings longer than the class of ordinals. The generalization is used to bound the rate of growth of any function on the universe of sets that is Σ1-definable in Kripke–Platek admissible set theory with an axiom of infinity. Formalizing the argument provides an ordinal analysis.


1971 ◽  
Vol 36 (3) ◽  
pp. 456-460 ◽  
Author(s):  
Leslie H. Tharp

It is natural, given the usual iterative description of the universe of sets, to investigate set theories which in some way take account of the unfinished character of the universe. We do not here consider any arguments aimed at justifying one system over another, or at clarifying the basic philosophy. Rather, we look at an obvious candidate which is similar to a system discussed by L. Pozsgay in [1]. Pozsgay sketched the development of the ordinary theorems in such a system and attempted to show it equiconsistent with ZF. In this paper we show that the consistency of the system we call IZF can be proved in the usual ZF set theory.


1984 ◽  
Vol 49 (4) ◽  
pp. 1185-1189 ◽  
Author(s):  
Saharon Shelah ◽  
Hugh Woodin

We prove several independence results relevant to an old question in the folklore of set theory. These results complement those in [Sh, Chapter XIII, §4]. The question is the following. Suppose V ⊨ “ZFC + CH” and r is a real not in V. Must V[r] ⊨ CH? To avoid trivialities assume = .We answer this question negatively. Specifically we find pairs of models (W, V) such that W ⊨ ZFC + CH, V = W[r], r a real, = and V ⊨ ¬CH. Actually we find a spectrum of such pairs using ZFC up to “ZFC + there exist measurable cardinals”. Basically the nicer the pair is as a solution, the more we need to assume in order to construct it.The relevant results in [Sh, Chapter XIII] state that if a pair (of inner models) (W, V) satisfies (1) and (2) then there is an inaccessible cardinal in L; if in addition V ⊨ 2ℵ0 > ℵ2 then 0# exists; and finally if (W, V) satisfies (1), (2) and (3) with V ⊨ 2ℵ0 > ℵω, then there is an inner model with a measurable cardinal.Definition 1. For a pair (W, V) we shall consider the following conditions:(1) V = W[r], r a real, = , W ⊨ ZFC + CH but CH fails in V.(2) W ⊨ GCH.(3) W and V have the same cardinals.


2006 ◽  
Vol 12 (4) ◽  
pp. 591-600 ◽  
Author(s):  
Sy-David Friedman

There are two standard ways to establish consistency in set theory. One is to prove consistency using inner models, in the way that Gödel proved the consistency of GCH using the inner model L. The other is to prove consistency using outer models, in the way that Cohen proved the consistency of the negation of CH by enlarging L to a forcing extension L[G].But we can demand more from the outer model method, and we illustrate this by examining Easton's strengthening of Cohen's result:Theorem 1 (Easton's Theorem). There is a forcing extensionL[G] of L in which GCH fails at every regular cardinal.Assume that the universe V of all sets is rich in the sense that it contains inner models with large cardinals. Then what is the relationship between Easton's model L[G] and V? In particular, are these models compatible, in the sense that they are inner models of a common third model? If not, then the failure of GCH at every regular cardinal is consistent only in a weak sense, as it can only hold in universes which are incompatible with the universe of all sets. Ideally, we would like L[G] to not only be compatible with V, but to be an inner model of V.We say that a statement is internally consistent iff it holds in some inner model, under the assumption that there are innermodels with large cardinals.


1982 ◽  
Vol 47 (1) ◽  
pp. 84-88
Author(s):  
Julius B. Barbanel

Supercompactness is usually defined in terms of the existence of certain ultrafilters. By the well-known procedure of taking ultrapowers of V (the universe of sets) and transitive collapses, one obtains transitive inner models of V and corresponding elementary embeddings from V into these inner models. These embeddings have been studied extensively (see, e.g. [3] or [4]). We investigate the action of these embeddings on cardinals. In particular, we establish a characterization, based upon cofinality, of which cardinals are fixed by these embeddings.


2007 ◽  
Vol 13 (2) ◽  
pp. 153-188 ◽  
Author(s):  
Akihiro Kanamori

Kurt Gödel (1906–1978) with his work on the constructible universeLestablished the relative consistency of the Axiom of Choice (AC) and the Continuum Hypothesis (CH). More broadly, he ensured the ascendancy of first-order logic as the framework and a matter of method for set theory and secured the cumulative hierarchy view of the universe of sets. Gödel thereby transformed set theory and launched it with structured subject matter and specific methods of proof. In later years Gödel worked on a variety of set theoretic constructions and speculated about how problems might be settled with new axioms. We here chronicle this development from the point of view of the evolution of set theory as a field of mathematics. Much has been written, of course, about Gödel's work in set theory, from textbook expositions to the introductory notes to his collected papers. The present account presents an integrated view of the historical and mathematical development as supported by his recently published lectures and correspondence. Beyond the surface of things we delve deeper into the mathematics. What emerges are the roots and anticipations in work of Russell and Hilbert, and most prominently the sustained motif of truth as formalizable in the “next higher system”. We especially work at bringing out how transforming Gödel's work was for set theory. It is difficult now to see what conceptual and technical distance Gödel had to cover and how dramatic his re-orientation of set theory was.


Author(s):  
José Ferreirós

This chapter considers one of the most intriguing questions that philosophy of mathematics in practice must, sooner or later, confront: how understanding of mathematics is obtained. In particular, it examines how issues of meaning and understanding in relation to practice and use relate to the question of the acceptability of “classical” or postulational mathematics, a question usually formulated in terms of consistency. The chapter begins with a discussion of the iterative conception of the universe of sets and its presuppositions, analyzing it from the standpoint of the web of practices. It then addresses the issue of conceptual understanding in mathematics, as exemplifid by the theory Zermelo–Fraenkel axiom system (ZFC). Finally, it looks at arguments based on the idea of the real-number continuum as a source of justification for the axioms of set theory.


Sign in / Sign up

Export Citation Format

Share Document