Increasing u2 by a stationary set preserving forcing

2009 ◽  
Vol 74 (1) ◽  
pp. 187-200
Author(s):  
Benjamin Claverie ◽  
Ralf Schindler

AbstractWe show that if I is a precipitous ideal on ω1 and if θ > ω1 is a regular cardinal, then there is a forcing ℙ = ℙ(I, θ) which preserves the stationarity of all I-positive sets such that in Vℙ, ⟨Hθ; ∈, I⟩ is a generic iterate of a countable structure ⟨M; ∈, Ī⟩. This shows that if the nonstationary ideal on ω1 is precipitous and exists, then there is a stationary set preserving forcing which increases . Moreover, if Bounded Martin's Maximum holds and the nonstationary ideal on ω1 is precipitous, then .

1989 ◽  
Vol 54 (3) ◽  
pp. 700-707 ◽  
Author(s):  
Moti Gitik

Suppose that I is a precipitous ideal over a cardinal κ and j is a generic embedding of I. What is the nature of j? If we assume the existence of a supercompact cardinal then, by Foreman, Magidor and Shelah [FMS], it is quite unclear where some of such j's are coming from. On the other hand, if ¬∃κ0(κ) = κ++, then, by Mitchell [Mi], the restriction of j to the core model is its iterated ultrapower by measures of it. A natural question arising here is if each iterated ultrapower of can be obtained as the restriction of a generic embedding of a precipitous ideal. Notice that there are obvious limitations. Thus the ultrapower of by a measure over λ cannot be obtained as a generic embedding by a precipitous ideal over κ ≠ λ. But if we fix κ and use iterated ultrapowers of which are based on κ, then the answer is positive. Namely a stronger statement is true:Theorem. Let τ be an ordinal and κ a measurable cardinal. There exists a generic extension V* of V so that NSℵ1 (the nonstationary ideal on ℵ1) is precipitous and, for every iterated ultrapower i of V of length ≤ τ by measures of V based on κ, there exists a stationary set forcing “the generic ultrapower restricted to V is i”.Our aim will be to prove this theorem. We assume that the reader is familiar with the paper [JMMiP] by Jech, Magidor, Mitchell and Prikry. We shall use the method of that paper for constructing precipitous ideals. Ideas of Levinski [L] for blowing up 2ℵ1 preserving precipitousness and of our own earlier paper [Gi] for linking together indiscernibles will be used also.


1989 ◽  
Vol 40 (3) ◽  
pp. 381-387
Author(s):  
Nobuyuki Kemoto

In this paper, we shall characterise the B(k)-property in generalised ordered (GO) spaces as follows.For every uncountable regular cardinal K, every GO space has the B(K)-property if and only if it has no closed subspace which is homeomorphic to a stationary set in K (with the subspace topology in K).


1992 ◽  
Vol 57 (1) ◽  
pp. 166-171
Author(s):  
Dan Velleman

In [2], Juhasz and Shelah use a forcing argument to show that it is consistent with GCH that there is a 0-dimensional T2 topological space X of cardinality ℵ3 such that every partition of the triples of X into countably many pieces has a nondiscrete (in the topology) homogeneous set. In this paper we will show how to construct such a space using a simplified (ω2, 1)-morass with certain additional structure added to it. The additional structure will be a slight strengthening of a built-in ◊ sequence, analogous to the strengthening of ordinary ◊k to ◊S for a stationary set S ⊆ k.Suppose 〈〈θα∣ ∝ ≤ ω2〉, 〈∝β∣α < β ≤ ω2〉〉 is a neat simplified (ω2, 1)-morass (see [3]). Let ℒ be a language with countably many symbols of all types, and suppose that for each α < ω2, α is an ℒ-structure with universe θα. The sequence 〈α∣α < ω2 is called a built-in ◊ sequence for the morass if for every ℒ-structure with universe ω3 there is some α < ω2 and some f ∈αω2 such that f(α) ≺ , where f(α) is the ℒ-structure isomorphic to α under the isomorphism f. We can strengthen this slightly by assuming that α is only defined for α ∈ S, for some stationary set S ⊆ ω2. We will then say that is a built-in ◊ sequence on levels in S if for every ℒ-structure with universe ω3 there is some α ∈ S and some f ∈ αω2 such that f(α) ≺ .


1973 ◽  
Vol 38 (3) ◽  
pp. 460-470 ◽  
Author(s):  
John Gregory

Let A be a countable admissible set (as defined in [1], [3]). The language LA consists of all infinitary finite-quantifier formulas (identified with sets, as in [1]) that are elements of A. Notationally, LA = A ∩ Lω1ω. Then LA is a countable subset of Lω1ω, the language of all infinitary finite-quantifier formulas with all conjunctions countable. The set is the set of Lω1ω sentences defined in 2.2 below. The following theorem characterizes those A-Σ1 sets Φ of LA sentences that have uncountable models.Main Theorem (3.1.). If Φ is an A-Σ1set of LA sentences, then the following are equivalent:(a) Φ has an uncountable model,(b) Φ has a model with a proper LA-elementary extension,(c) for every , ⋀Φ → C is not valid.This theorem was announced in [2] and is proved in §§3, 4, 5. Makkai's earlier [4, Theorem 1] implies that, if Φ determines countable structure up to Lω1ω-elementary equivalence, then (a) is equivalent to (c′) for all , ⋀Φ → C is not valid.The requirement in 3.1 that Φ is A-Σ1 is essential when the set ω of all natural numbers is an element of A. For by the example of [2], then there is a set Φ LA sentences such that (b) holds and (a) fails; it is easier to show that, if ω ϵ A, there is a set Φ of LA sentences such that (c) holds and (b) fails.


2004 ◽  
Vol 69 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Sy D. Friedman

In this article we study the strength of absoluteness (with real parameters) in various types of generic extensions, correcting and improving some results from [3]. (In particular, see Theorem 3 below.) We shall also make some comments relating this work to the bounded forcing axioms BMM, BPFA and BSPFA.The statement “ absoluteness holds for ccc forcing” means that if a formula with real parameters has a solution in a ccc set-forcing extension of the universe V, then it already has a solution in V. The analogous definition applies when ccc is replaced by other set-forcing notions, or by class-forcing.Theorem 1. [1] absoluteness for ccc has no strength; i.e., if ZFC is consistent then so is ZFC + absoluteness for ccc.The following results concerning (arbitrary) set-forcing and class-forcing can be found in [3].Theorem 2 (Feng-Magidor-Woodin). (a) absoluteness for arbitrary set-forcing is equiconsistent with the existence of a reflecting cardinal, i.e., a regular cardinal κ such that H(κ) is ∑2-elementary in V.(b) absoluteness for class-forcing is inconsistent.We consider next the following set-forcing notions, which lie strictly between ccc and arbitrary set-forcing: proper, semiproper, stationary-preserving and ω1-preserving. We refer the reader to [8] for the definitions of these forcing notions.Using a variant of an argument due to Goldstern-Shelah (see [6]), we show the following. This result corrects Theorem 2 of [3] (whose proof only shows that if absoluteness holds in a certain proper forcing extension, then in L either ω1 is Mahlo or ω2 is inaccessible).


1982 ◽  
Vol 47 (4) ◽  
pp. 739-754
Author(s):  
C.P. Farrington

This paper is devoted to the proof of the following theorem.Theorem. Let M be a countable standard transitive model of ZF + V = L, and let ℒ Є M be a wellfounded lattice in M, with top and bottom. Let ∣ℒ∣M = λ, and suppose κ ≥ λ is a regular cardinal in M. Then there is a generic extension N of M such that(i) N and M have the same cardinals, and κN ⊂ M;(ii) the c-degrees of sets of ordinals of N form a pattern isomorphic to ℒ;(iii) if A ⊂ On and A Є N, there is B Є P(κ+)N such that L(A) = L(B).The proof proceeds by forcing with Souslin trees, and relies heavily on techniques developed by Jech. In [5] he uses these techniques to construct simple Boolean algebras in L, and in [6] he uses them to construct a model of set theory whose c-degrees have orderlype 1 + ω*.The proof also draws on ideas of Adamovicz. In [1]–[3] she obtains consistency results concerning the possible patterns of c-degrees of sets of ordinals using perfect set forcing and symmetric models. These methods have the advantage of yielding real degrees, but involve greater combinatorial complexity, in particular the use of ‘sequential representations’ of lattices.The advantage of the approach using Souslin trees is twofold: first, we can make use of ready-made combinatorial principles which hold in L, and secondly, the notion of genericity over a Souslin tree is particularly simple.


1991 ◽  
Vol 56 (1) ◽  
pp. 103-107
Author(s):  
Maxim R. Burke

AbstractWe investigate the cofinality of the partial order κ of functions from a regular cardinal κ into the ideal of Lebesgue measure zero subsets of R. We show that when add () = κ and the covering lemma holds with respect to an inner model of GCH, then cf (κ) = max{cf(κκ), cf([cf()]κ)}. We also give an example to show that the covering assumption cannot be removed.


2005 ◽  
Vol 357 (12) ◽  
pp. 4813-4837 ◽  
Author(s):  
Pierre Matet ◽  
Andrzej Rosłanowski ◽  
Saharon Shelah
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document