A form of feasible interpolation for constant depth Frege systems

2010 ◽  
Vol 75 (2) ◽  
pp. 774-784 ◽  
Author(s):  
Jan Krajíček

AbstractLet L be a first-order language and Φ and Ψ two L-sentences that cannot be satisfied simultaneously in any finite L-structure. Then obviously the following principle ChainL,Φ,Ψ(n, m) holds: For any chain of finite L-structures C1, …, Cm with the universe [n] one of the following conditions must fail:For each fixed L and parameters n, m the principle ChainL,Φ,Ψ(n,m) can be encoded into a propositional DNF formula of size polynomial in n, m.For any language L containing only constants and unary predicates we show that there is a constant CL such that the following holds: If a constant depth Frege system in DeMorgan language proves ChainL,Φ,Ψ(n, cL . n) by a size s proof then the class of finite L-structures with universe [n] satisfying Φ can be separated from the class of those L-structures on [n] satisfying ψ by a depth 3 formula of size 2log(S)O(1) and with bottom fan-in log(S)O(1).

2016 ◽  
Vol 81 (3) ◽  
pp. 951-971
Author(s):  
NADAV MEIR

AbstractWe say a structure ${\cal M}$ in a first-order language ${\cal L}$ is indivisible if for every coloring of its universe in two colors, there is a monochromatic substructure ${\cal M}\prime \subseteq {\cal M}$ such that ${\cal M}\prime \cong {\cal M}$. Additionally, we say that ${\cal M}$ is symmetrically indivisible if ${\cal M}\prime$ can be chosen to be symmetrically embedded in ${\cal M}$ (that is, every automorphism of ${\cal M}\prime$ can be extended to an automorphism of ${\cal M}$). Similarly, we say that ${\cal M}$ is elementarily indivisible if ${\cal M}\prime$ can be chosen to be an elementary substructure. We define new products of structures in a relational language. We use these products to give recipes for construction of elementarily indivisible structures which are not transitive and elementarily indivisible structures which are not symmetrically indivisible, answering two questions presented by A. Hasson, M. Kojman, and A. Onshuus.


1972 ◽  
Vol 37 (3) ◽  
pp. 487-493 ◽  
Author(s):  
John T. Baldwin

In [1] the notions of strongly minimal formula and algebraic closure were applied to the study of ℵ1-categorical theories. In this paper we study a particularly simple class of ℵ1-categorical theories. We characterize this class in terms of the analysis of the Stone space of models of T given by Morley [3].We assume familiarity with [1] and [3], but for convenience we list the principal results and definitions from those papers which are used here. Our notation is the same as in [1] with the following exceptions.We deal with a countable first order language L. We may extend the language L in several ways. If is an L-structure, there is a natural extension of L obtained by adjoining to L a constant a for each (the universe of ). For each sentence A(a1, …, an) ∈ L(A) we say satisfies A(a1, …, an) and write if in Shoenfield's notation If is an L-structure and X is a subset of , then L(X) is the language obtained by adjoining to L a name x for each is the natural expansion of to an L(X)-structure. A structure is an inessential expansion [4, p. 141] of an L-structure if for some .


1978 ◽  
Vol 43 (1) ◽  
pp. 113-117
Author(s):  
J. B. Paris

Let θ(ν) be a formula in the first-order language of arithmetic and letIn this note we study the relationship between the schemas I′ and I+.Our interest in I+ lies in the fact that it is ostensibly a more reasonable schema than I′. For, if we believe the hypothesis of I+(θ) then to verify θ(n) only requires at most 2log2(n) steps, whereas assuming the hypothesis of I′(θ) we require n steps to verify θ(n). In the physical world naturally occurring numbers n rarely exceed 10100. For such n applying 2log2(n) steps is quite feasible whereas applying n steps may well not be.Of course this is very much an anthropomorphic argument so we would expect that it would be most likely to be valid when we restrict our attention to relatively simple formulas θ. We shall show that when restricted to open formulas I+ does not imply I′ but that this fails for the classes Σn, Πn, n ≥ 0.We shall work in PA−, where PA− consists of Peano's Axioms less induction together with∀u, w(u + w = w + u ∧ u · w = w · u),∀u, w, t ((u + w) + t = u + (w + t) ∧ (u · w) · t = u · (w · t)),∀u, w, t(u · (w + t) = u · w + u · t),∀u, w(u ≤ w ↔ ∃t(u + t = w)),∀u, w(u ≤ w ∨ w ≤ u),∀u, w, t(u + w = u + t → w = t).The reasons for working with PA− rather than Peano's Axioms less induction is that our additional axioms, whilst intuitively reasonable, will not necessarily follow from some of the weaker forms of I+ which we shall be considering. Of course PA− still contains those Peano Axioms which define + andNotice that, trivially, PA− ⊦ I′(θ) → I+(θ) for any formula θ.


1966 ◽  
Vol 31 (4) ◽  
pp. 633-640 ◽  
Author(s):  
Mitsuru Yasuhara

The equi-cardinality quantifier1 to be used in this article, written as Qx, is characterised by the following semantical rule: A formula QxA(x) is true in a relational system exactly when the cardinality of the set consisting of these elements which make A(x) true is the same as that of the universe. For instance, QxN(x) is true in 〈Rt, N〉 but false in 〈Rl, N〉 where Rt, Rl, and N are the sets of rational numbers, real numbers, and natural numbers, respectively. We notice that in finite domains the equi-cardinality quantifier is the same as the universal quantifier. For this reason, all relational systems considered in the following are assumed infinite.


1977 ◽  
Vol 42 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Małgorzata Dubiel

Let L be a countable first-order language and L(Q) be obtained by adjoining an additional quantifier Q. Q is a generalization of the quantifier “there exists uncountably many x such that…” which was introduced by Mostowski in [4]. The logic of this latter quantifier was formalized by Keisler in [2]. Krivine and McAloon [3] considered quantifiers satisfying some but not all of Keisler's axioms. They called a formula φ(x) countable-like iffor every ψ. In Keisler's logic, φ(x) being countable-like is the same as ℳ⊨┐Qxφ(x). The main theorem of [3] states that any countable model ℳ of L[Q] has an elementary extension N, which preserves countable-like formulas but no others, such that the only sets definable in both N and M are those defined by formulas countable-like in M. Suppose C(x) in M is linearly ordered and noncountable-like but with countable-like proper segments. Then in N, C will have new elements greater than all “old” elements but no least new element — otherwise it will be definable in both models. The natural question is whether it is possible to use generalized quantifiers to extend models elementarily in such a way that a noncountable-like formula C will have a minimal new element. There are models and formulas for which it is not possible. For example let M be obtained from a minimal transitive model of ZFC by letting Qxφ(x) mean “there are arbitrarily large ordinals satisfying φ”.


1973 ◽  
Vol 38 (3) ◽  
pp. 368-388 ◽  
Author(s):  
John M. Macintyre

Let α be an admissible ordinal and let L be the first order language with equality and a single binary relation ≤. The elementary theory of the α-degrees is the set of all sentences of L which are true in the universe of the α-degrees when ≤ is interpreted as the partial ordering of the α-degrees. Lachlan [6] showed that the elementary theory of the ω-degrees is nonaxiomatizable by proving that any countable distributive lattice with greatest and least members can be imbedded as an initial segment of the degrees of unsolvability. This paper deals with the extension of these results to α-recursion theory for an arbitrary countable admissible α > ω. Given α, we construct a set A with α-degree a such that every countable distributive lattice with greatest and least member is order isomorphic to a segment of α-degrees {d ∣ a ≤αd≤αb} for some α-degree b. As in [6] this implies that the elementary theory of the α-degrees is nonaxiomatizable and hence undecidable.A is constructed in §2. A is a set of integers which is generic with respect to a suitable notion of forcing. Additional applications of such sets are summarized at the end of the section. In §3 we define the notion of a tree and construct a particular tree T0 which is weakly α-recursive in A. Using T0 we can apply the techniques of [6] and [2] to α-recursion theory. In §4 we reduce our main results to three technical lemmas concerning systems of trees. These lemmas are proved in §5.


1975 ◽  
Vol 40 (2) ◽  
pp. 186-196 ◽  
Author(s):  
Ralph Mckenzie

An algorithm has been described by S. Burris [3] which decides if a finite set of identities, whose function symbols are of rank at most 1, has a finite, nontrivial model. (By “nontrivial” it is meant that the universe of the model has at least two elements.) As a consequence of some results announced in the abstracts [2] and [8], it is clear that if the restriction on the ranks of function symbols is relaxed somewhat, then this finite model problem is no longer solvable by an algorithm, or at least not by a “recursive algorithm” as the term is used today.In this paper we prove a sharp form of this negative result; showing, by the way, that Burris' result is in a sense the best possible result in the positive direction. Our main result is that in a first order language whose only function or relation symbol is a 2-place function symbol (the language of groupoids), the set of identities that have no nontrivial model, is recursively inseparable from the set of identities such that the sentence has a finite model. As a corollary, we have that each of the following problems, restricted to sentences defined in the language of groupoids, is algorithmically unsolvable: (1) to decide if an identity has a finite nontrivial model; (2) to decide if an identity has a nontrivial model; (3) to decide if a universal sentence has a finite model; (4) to decide if a universal sentence has a model. We note that the undecidability of (2) was proved earlier by McNulty [13, Theorem 3.6(i)], improving results obtained by Murskiǐ [14] and by Perkins [17]. The other parts of the corollary seem to be new.


1992 ◽  
Vol 57 (2) ◽  
pp. 449-451 ◽  
Author(s):  
Lee A. Rubel

Let be the ring of all entire functions of one complex variable, and let DA be the subring of those entire functions that are differentially algebraic (DA); that is, they satisfy a nontrivial algebraic differential equation.where P is a non-identically-zero polynomial in its n + 2 variables. It seems not to be known whether DA is elementarily equivalent to . This would mean that DA and have exactly the same true statements about them, in the first-order language of rings. (Roughly speaking, a sentence about a ring R is first-order if it has finite length and quantifies only over elements (i.e., not subsets or functions or relations) of R.) It follows from [NAN] that DA and are not isomorphic as rings, but this does not answer the question of elementary equivalence.


1980 ◽  
Vol 23 (1) ◽  
pp. 95-98
Author(s):  
Alan Adamson

Let L be a countable first-order language and T a fixed complete theory in L. If is a model of T, is an n-sequence of variables, and ā=〈a1,…, an〉 is an n-sequence of elements of M, the universe of , we let where ranges over formulas of L containing freely at most the variables υ1,…υn. ā is said to realize in We let be where is the sequence of the first n variables of L.


2019 ◽  
Vol 84 (1) ◽  
pp. 290-300
Author(s):  
JOHN S. WILSON

AbstractIt is proved that there is a formula$\pi \left( {h,x} \right)$in the first-order language of group theory such that each component and each non-abelian minimal normal subgroup of a finite groupGis definable by$\pi \left( {h,x} \right)$for a suitable elementhofG; in other words, each such subgroup has the form$\left\{ {x|x\pi \left( {h,x} \right)} \right\}$for someh. A number of consequences for infinite models of the theory of finite groups are described.


Sign in / Sign up

Export Citation Format

Share Document