On the ring of differentially-algebraic entire functions

1992 ◽  
Vol 57 (2) ◽  
pp. 449-451 ◽  
Author(s):  
Lee A. Rubel

Let be the ring of all entire functions of one complex variable, and let DA be the subring of those entire functions that are differentially algebraic (DA); that is, they satisfy a nontrivial algebraic differential equation.where P is a non-identically-zero polynomial in its n + 2 variables. It seems not to be known whether DA is elementarily equivalent to . This would mean that DA and have exactly the same true statements about them, in the first-order language of rings. (Roughly speaking, a sentence about a ring R is first-order if it has finite length and quantifies only over elements (i.e., not subsets or functions or relations) of R.) It follows from [NAN] that DA and are not isomorphic as rings, but this does not answer the question of elementary equivalence.

2016 ◽  
Vol 81 (3) ◽  
pp. 951-971
Author(s):  
NADAV MEIR

AbstractWe say a structure ${\cal M}$ in a first-order language ${\cal L}$ is indivisible if for every coloring of its universe in two colors, there is a monochromatic substructure ${\cal M}\prime \subseteq {\cal M}$ such that ${\cal M}\prime \cong {\cal M}$. Additionally, we say that ${\cal M}$ is symmetrically indivisible if ${\cal M}\prime$ can be chosen to be symmetrically embedded in ${\cal M}$ (that is, every automorphism of ${\cal M}\prime$ can be extended to an automorphism of ${\cal M}$). Similarly, we say that ${\cal M}$ is elementarily indivisible if ${\cal M}\prime$ can be chosen to be an elementary substructure. We define new products of structures in a relational language. We use these products to give recipes for construction of elementarily indivisible structures which are not transitive and elementarily indivisible structures which are not symmetrically indivisible, answering two questions presented by A. Hasson, M. Kojman, and A. Onshuus.


1963 ◽  
Vol 3 (2) ◽  
pp. 202-206 ◽  
Author(s):  
J. C. Butcher

Huta [1], [2] has given two processes for solving a first order differential equation to sixth order accuracy. His methods are each eight stage Runge-Kutta processes and differ mainly in that the later process has simpler coefficients occurring in it.


1977 ◽  
Vol 68 ◽  
pp. 17-19 ◽  
Author(s):  
Michihiko Matsuda

AbstractConsider an algebraic differential equation F = 0 of the first order. A rigorous definition will be given to the classical concept of “particular solutions” of F = 0. By Ritt’s low power theorem we shall prove that a singular solution of F = 0 belongs to the general solution of F if and only if it is a particular solution of F = 0.


1986 ◽  
Vol 51 (2) ◽  
pp. 374-376 ◽  
Author(s):  
Simon Thomas

If L is a first order language and n is a natural number, then Ln is the set of formulas which only make use of the variables x1,…,xn. While every finite structure is determined up to isomorphism by its theory in L, the same is no longer true in Ln. This simple observation is the source of a number of intriguing questions. For example, Poizat [2] has asked whether a complete theory in Ln which has at least two nonisomorphic finite models must necessarily also have an infinite one. The purpose of this paper is to present some counterexamples to this conjecture.Theorem. For each n ≤ 3 there are complete theories in L2n−2andL2n−1having exactly n + 1 models.In our notation and definitions, we follow Poizat [2]. To test structures for elementary equivalence in Ln, we shall use the modified Ehrenfeucht-Fraïssé games of Immerman [1]. For convenience, we repeat his definition here.Suppose that L is a purely relational language, each of the relations having arity at most n. Let and ℬ be two structures for L. Define the Ln game on and ℬ as follows. There are two players, I and II, and there are n pairs of counters a1, b1, …, an, bn. On each move, player I picks up any of the counters and places it on an element of the appropriate structure.


1978 ◽  
Vol 43 (1) ◽  
pp. 113-117
Author(s):  
J. B. Paris

Let θ(ν) be a formula in the first-order language of arithmetic and letIn this note we study the relationship between the schemas I′ and I+.Our interest in I+ lies in the fact that it is ostensibly a more reasonable schema than I′. For, if we believe the hypothesis of I+(θ) then to verify θ(n) only requires at most 2log2(n) steps, whereas assuming the hypothesis of I′(θ) we require n steps to verify θ(n). In the physical world naturally occurring numbers n rarely exceed 10100. For such n applying 2log2(n) steps is quite feasible whereas applying n steps may well not be.Of course this is very much an anthropomorphic argument so we would expect that it would be most likely to be valid when we restrict our attention to relatively simple formulas θ. We shall show that when restricted to open formulas I+ does not imply I′ but that this fails for the classes Σn, Πn, n ≥ 0.We shall work in PA−, where PA− consists of Peano's Axioms less induction together with∀u, w(u + w = w + u ∧ u · w = w · u),∀u, w, t ((u + w) + t = u + (w + t) ∧ (u · w) · t = u · (w · t)),∀u, w, t(u · (w + t) = u · w + u · t),∀u, w(u ≤ w ↔ ∃t(u + t = w)),∀u, w(u ≤ w ∨ w ≤ u),∀u, w, t(u + w = u + t → w = t).The reasons for working with PA− rather than Peano's Axioms less induction is that our additional axioms, whilst intuitively reasonable, will not necessarily follow from some of the weaker forms of I+ which we shall be considering. Of course PA− still contains those Peano Axioms which define + andNotice that, trivially, PA− ⊦ I′(θ) → I+(θ) for any formula θ.


1977 ◽  
Vol 42 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Małgorzata Dubiel

Let L be a countable first-order language and L(Q) be obtained by adjoining an additional quantifier Q. Q is a generalization of the quantifier “there exists uncountably many x such that…” which was introduced by Mostowski in [4]. The logic of this latter quantifier was formalized by Keisler in [2]. Krivine and McAloon [3] considered quantifiers satisfying some but not all of Keisler's axioms. They called a formula φ(x) countable-like iffor every ψ. In Keisler's logic, φ(x) being countable-like is the same as ℳ⊨┐Qxφ(x). The main theorem of [3] states that any countable model ℳ of L[Q] has an elementary extension N, which preserves countable-like formulas but no others, such that the only sets definable in both N and M are those defined by formulas countable-like in M. Suppose C(x) in M is linearly ordered and noncountable-like but with countable-like proper segments. Then in N, C will have new elements greater than all “old” elements but no least new element — otherwise it will be definable in both models. The natural question is whether it is possible to use generalized quantifiers to extend models elementarily in such a way that a noncountable-like formula C will have a minimal new element. There are models and formulas for which it is not possible. For example let M be obtained from a minimal transitive model of ZFC by letting Qxφ(x) mean “there are arbitrarily large ordinals satisfying φ”.


1973 ◽  
Vol 16 (2) ◽  
pp. 176-184 ◽  
Author(s):  
K. Mahler

AbstractIt is proved that if is a formal power series with algebraic p-adic coefficients which satisfies an algebraic differential equation, then a constant y4 > 0 and a constant integer h1 ≧ 0 exist such that .


1965 ◽  
Vol 17 ◽  
pp. 676-686 ◽  
Author(s):  
R. P. Gilbert

In this paper we shall investigate the singular behaviour of the solutions to the elliptic equation(1.1)where A (r2), C(r2) are entire functions of the complex variable


2016 ◽  
Vol 19 (1) ◽  
pp. 98-104 ◽  
Author(s):  
George E. Chatzarakis ◽  
Özkan Öcalan

Consider the first-order retarded differential equation $$\begin{eqnarray}x^{\prime }(t)+p(t)x({\it\tau}(t))=0,\quad t\geqslant t_{0},\end{eqnarray}$$ where $p(t)\geqslant 0$ and ${\it\tau}(t)$ is a function of positive real numbers such that ${\it\tau}(t)\leqslant t$ for $t\geqslant t_{0}$, and $\lim _{t\rightarrow \infty }{\it\tau}(t)=\infty$. Under the assumption that the retarded argument is non-monotone, a new oscillation criterion, involving $\liminf$, is established when the well-known oscillation condition $$\begin{eqnarray}\liminf _{t\rightarrow \infty }\int _{{\it\tau}(t)}^{t}p(s)\,ds>\frac{1}{e}\end{eqnarray}$$ is not satisfied. An example illustrating the result is also given.


Sign in / Sign up

Export Citation Format

Share Document