Extending Baire property by uncountably many sets

2010 ◽  
Vol 75 (3) ◽  
pp. 896-904
Author(s):  
Paweł Kawa ◽  
Janusz Pawlikowski

AbstractWe show that for an uncountable κ in a suitable Cohen real model for any family {Av}v<κ of sets of reals there is a σ-homomorphism h from the σ-algebra generated by Borel sets and the sets Av, into the algebra of Baire subsets of 2κ modulo meager sets such that for all Borel B,The proof is uniform, works also for random reals and the Lebesgue measure, and in this way generalizes previous results of Carlson and Solovay for the Lebesgue measure and of Kamburelis and Zakrzewski for the Baire property.

1998 ◽  
Vol 63 (1) ◽  
pp. 29-49
Author(s):  
Arnold W. Miller ◽  
Juris Steprans

For x, y ϵ ℝω define the inner productwhich may not be finite or even exist. We say that x and y are orthogonal if (x, y) converges and equals 0.Define lp to be the set of all x ϵ ℝω such thatFor Hilbert space, l2, any family of pairwise orthogonal sequences must be countable. For a good introduction to Hilbert space, see Retherford [4].Theorem 1. There exists a pairwise orthogonal family F of size continuum such that F is a subset of lp for every p > 2.It was already known that there exists a family of continuum many pairwise orthogonal elements of ℝω. A family F ⊆ ℝω∖0 of pairwise orthogonal sequences is orthogonally complete or a maximal orthogonal family iff the only element of ℝω orthogonal to every element of F is 0, the constant 0 sequence.It is somewhat surprising that Kunen's perfect set of orthogonal elements is maximal (a fact first asserted by Abian). MAD families, nonprincipal ultrafilters, and many other such maximal objects cannot be even Borel.Theorem 2. There exists a perfect maximal orthogonal family of elements of ℝω.Abian raised the question of what are the possible cardinalities of maximal orthogonal families.Theorem 3. In the Cohen real model there is a maximal orthogonal set in ℝω of cardinality ω1, but there is no maximal orthogonal set of cardinality κ with ω1 < κ < ϲ.By the Cohen real model we mean any model obtained by forcing with finite partial functions from γ to 2, where the ground model satisfies GCH and γω = γ.


2007 ◽  
Vol 14 (4) ◽  
pp. 661-671
Author(s):  
Jacek Hejduk ◽  
Anna Loranty

Abstract This paper contains some results connected with topologies generated by lower and semi-lower density operators. We show that in some measurable spaces (𝑋, 𝑆, 𝐽) there exists a semi-lower density operator which does not generate a topology. We investigate some properties of nowhere dense sets, meager sets and σ-algebras of sets having the Baire property, associated with the topology generated by a semi-lower density operator.


1985 ◽  
Vol 37 (2) ◽  
pp. 310-323 ◽  
Author(s):  
M. Essén

For f ∊ L−1(0, T), we define the distribution functionwhere T is a fixed positive number and |·| denotes Lebesgue measure. Let Φ:[0, T] → [0, m] be a nonincreasing, right continuous function. In an earlier paper [3], we discussed the equation(0.1)when the coefficient q was allowed to vary in the classWe were in particular interested in finding the supremum and infimum of y(T) when q was in or in the convex hull Ω(Φ) of (see below).


1964 ◽  
Vol 16 ◽  
pp. 721-728 ◽  
Author(s):  
Frank Forelli

Let a be the Lebesgue measure on the unit circle |z| = 1 withand let Lp be the space of complex-valued σ-measurable functions f such thatis finite. Hp is the closure in Lp of the algebra of analytic polynomials


2019 ◽  
Vol 85 (1) ◽  
pp. 486-510
Author(s):  
RUPERT HÖLZL ◽  
WOLFGANG MERKLE ◽  
JOSEPH MILLER ◽  
FRANK STEPHAN ◽  
LIANG YU

AbstractWe prove that the continuous function${\rm{\hat \Omega }}:2^\omega \to $ that is defined via$X \mapsto \mathop \sum \limits_n 2^{ - K\left( {Xn} \right)} $ for all $X \in {2^\omega }$ is differentiable exactly at the Martin-Löf random reals with the derivative having value 0; that it is nowhere monotonic; and that $\mathop \smallint \nolimits _0^1{\rm{\hat{\Omega }}}\left( X \right)\,{\rm{d}}X$ is a left-c.e. $wtt$-complete real having effective Hausdorff dimension ${1 / 2}$.We further investigate the algorithmic properties of ${\rm{\hat{\Omega }}}$. For example, we show that the maximal value of ${\rm{\hat{\Omega }}}$ must be random, the minimal value must be Turing complete, and that ${\rm{\hat{\Omega }}}\left( X \right) \oplus X{ \ge _T}\emptyset \prime$ for every X. We also obtain some machine-dependent results, including that for every $\varepsilon > 0$, there is a universal machine V such that ${{\rm{\hat{\Omega }}}_V}$ maps every real X having effective Hausdorff dimension greater than ε to a real of effective Hausdorff dimension 0 with the property that $X{ \le _{tt}}{{\rm{\hat{\Omega }}}_V}\left( X \right)$; and that there is a real X and a universal machine V such that ${{\rm{\Omega }}_V}\left( X \right)$ is rational.


2019 ◽  
Vol 84 (3) ◽  
pp. 1224-1239
Author(s):  
GABRIEL DEBS ◽  
JEAN SAINT RAYMOND

AbstractWe study the behavior of the game operator $$ on Wadge classes of Borel sets. In particular we prove that the classical Moschovakis results still hold in this setting. We also characterize Wadge classes ${\bf{\Gamma }}$ for which the class has the substitution property. An effective variation of these results shows that for all $1 \le \eta < \omega _1^{{\rm{CK}}}$ and $2 \le \xi < \omega _1^{{\rm{CK}}}$, is a Spector class while is not.


2018 ◽  
Vol 83 (3) ◽  
pp. 920-938
Author(s):  
GUNTER FUCHS ◽  
RALF SCHINDLER

AbstractIt is shown that $K|{\omega _1}$ need not be solid in the sense previously introduced by the authors: it is consistent that there is no inner model with a Woodin cardinal yet there is an inner model W and a Cohen real x over W such that $K|{\omega _1}\,\, \in \,\,W[x] \setminus W$. However, if ${0^{\rm{\P}}}$ does not exist and $\kappa \ge {\omega _2}$ is a cardinal, then $K|\kappa$ is solid. We draw the conclusion that solidity is not forcing absolute in general, and that under the assumption of $\neg {0^{\rm{\P}}}$, the core model is contained in the solid core, previously introduced by the authors.It is also shown, assuming ${0^{\rm{\P}}}$ does not exist, that if there is a forcing that preserves ${\omega _1}$, forces that every real has a sharp, and increases $\delta _2^1$, then ${\omega _1}$ is measurable in K.


1991 ◽  
Vol 33 (2) ◽  
pp. 129-134
Author(s):  
Szilárd GY. Révész ◽  
Imre Z. Ruzsa

If f is a real function, periodic with period 1, we defineIn the whole paper we write ∫ for , mE for the Lebesgue measure of E ∩ [0,1], where E ⊂ ℝ is any measurable set of period 1, and we also use XE for the characteristic function of the set E. Consistent with this, the meaning of ℒp is ℒp [0, 1]. For all real xwe haveif f is Riemann-integrable on [0, 1]. However,∫ f exists for all f ∈ ℒ1 and one would wish to extend the validity of (2). As easy examples show, (cf. [3], [7]), (2) does not hold for f ∈ ℒp in general if p < 2. Moreover, Rudin [4] showed that (2) may fail for all x even for the characteristic function of an open set, and so, to get a reasonable extension, it is natural to weaken (2) towhere S ⊂ ℕ is some “good” increasing subsequence of ℕ. Naturally, for different function classes ℱ ⊂ ℒ1 we get different meanings of being good. That is, we introduce the class of ℱ-good sequences as


1957 ◽  
Vol 53 (2) ◽  
pp. 312-317 ◽  
Author(s):  
Trevor J. Mcminn

1. Introduction. Let 0 < λ < 1 and remove from the closed unit interval the open interval of length λ concentric with the unit interval. From each of the two remaining closed intervals of length ½(1 − λ) remove the concentric open interval of length ½λ(1 − λ). From each of the four remaining closed intervals of length ¼λ(1 − λ)2 remove the concentric open interval of length ¼λ(l − λ)2, etc. The remaining set is a perfect non-dense set of Lebesgue measure zero and is the Cantor set for λ = ⅓. Let Tλr be the Cartesian product of this set with the set similar to it obtained by magnifying it by a factor r > 0. Letting L be Carathéodory linear measure (1) and letting G be Gillespie linear square(2), Randolph(3) has established the following relations:


2009 ◽  
Vol 29 (4) ◽  
pp. 1119-1140 ◽  
Author(s):  
KARMA DAJANI ◽  
YUSUF HARTONO ◽  
COR KRAAIKAMP

AbstractLet 0<α<1 andβ>1. We show that everyx∈[0,1] has an expansion of the formwherehi=hi(x)∈{0,α/β}, andpi=pi(x)∈{0,1}. We study the dynamical system underlying this expansion and give the density of the invariant measure that is equivalent to the Lebesgue measure. We prove that the system is weakly Bernoulli, and we give a version of the natural extension. For special values ofα, we give the relationship of this expansion with the greedyβ-expansion.


Sign in / Sign up

Export Citation Format

Share Document