Quantifier elimination in valued Ore modules

2010 ◽  
Vol 75 (3) ◽  
pp. 1007-1034 ◽  
Author(s):  
Luc Bélair ◽  
Françoise Point

AbstractWe consider valued fields with a distinguished isometry or contractive derivation as valued modules over the Ore ring of difference operators. Under certain assumptions on the residue field, we prove quantifier elimination first in the pure module language, then in that language augmented with a chain of additive subgroups, and finally in a two-sorted language with a valuation map. We apply quantifier elimination to prove that these structures do not have the independence property.

2015 ◽  
Vol 80 (4) ◽  
pp. 1315-1338
Author(s):  
LUC BÉLAIR ◽  
FRANÇOISE POINT

AbstractWe consider valued fields with a distinguished contractive map as valued modules over the Ore ring of difference operators. We prove quantifier elimination for separably closed valued fields with the Frobenius map, in the pure module language augmented with functions yielding components for a p-basis and a chain of subgroups indexed by the valuation group.


2015 ◽  
Vol 16 (3) ◽  
pp. 447-499 ◽  
Author(s):  
Silvain Rideau

We prove field quantifier elimination for valued fields endowed with both an analytic structure that is $\unicode[STIX]{x1D70E}$-Henselian and an automorphism that is $\unicode[STIX]{x1D70E}$-Henselian. From this result we can deduce various Ax–Kochen–Eršov type results with respect to completeness and the independence property. The main example we are interested in is the field of Witt vectors on the algebraic closure of $\mathbb{F}_{p}$ endowed with its natural analytic structure and the lifting of the Frobenius. It turns out we can give a (reasonable) axiomatization of its first-order theory and that this theory does not have the independence property.


1990 ◽  
Vol 55 (3) ◽  
pp. 1125-1129 ◽  
Author(s):  
Johan Pas

In [10] we introduced a new first order language for valued fields. This language has three sorts of variables, namely variables for elements of the valued field, variables for elements of the residue field and variables for elements of the value group. contains symbols for the standard field, residue field, and value group operations and a function symbol for the valuation. Essential in our language is a function symbol for an angular component map modulo P, which is a map from the field to the residue field (see Definition 1.2).For this language we proved a quantifier elimination theorem for Henselian valued fields of equicharacteristic zero which possess such an angular component map modulo P [10, Theorem 4.1]. In the first section of this paper we give some partial results on the existence of an angular component map modulo P on an arbitrary valued field.By applying the above quantifier elimination theorem to ultraproducts ΠQp/D, we obtained a quantifier elimination, in the language , for the p-adic field Qp; and this elimination is uniform for almost all primes p [10, Corollary 4.3]. In §2 we prove that our language is essentially stronger than the natural language for p-adic fields in the sense that the angular component map modulo P cannot be defined, uniformly for almost all p, in terms of the natural language for p-adic fields.


2001 ◽  
Vol 66 (3) ◽  
pp. 1493-1503
Author(s):  
Ingo Brigandt

AbstractWe give an answer to the question as to whether quantifier elimination is possible in some infinite algebraic extensions of ℚp (‘infinite p-adic fields’) using a natural language extension. The present paper deals with those infinite p-adic fields which admit only tamely ramified algebraic extensions (so-called tame fields). In the case of tame fields whose residue fields satisfy Kaplansky's condition of having no extension of p-divisible degree quantifier elimination is possible when the language of valued fields is extended by the power predicates Pn introduced by Macintyre and, for the residue field, further predicates and constants. For tame infinite p-adic fields with algebraically closed residue fields an extension by Pn predicates is sufficient.


2016 ◽  
Vol 81 (2) ◽  
pp. 400-416
Author(s):  
SYLVY ANSCOMBE ◽  
FRANZ-VIKTOR KUHLMANN

AbstractWe extend the characterization of extremal valued fields given in [2] to the missing case of valued fields of mixed characteristic with perfect residue field. This leads to a complete characterization of the tame valued fields that are extremal. The key to the proof is a model theoretic result about tame valued fields in mixed characteristic. Further, we prove that in an extremal valued field of finitep-degree, the images of all additive polynomials have the optimal approximation property. This fact can be used to improve the axiom system that is suggested in [8] for the elementary theory of Laurent series fields over finite fields. Finally we give examples that demonstrate the problems we are facing when we try to characterize the extremal valued fields with imperfect residue fields. To this end, we describe several ways of constructing extremal valued fields; in particular, we show that in every ℵ1saturated valued field the valuation is a composition of extremal valuations of rank 1.


2015 ◽  
Vol 21 (4) ◽  
pp. 1177-1201 ◽  
Author(s):  
Salih Durhan ◽  
Gönenç Onay

2019 ◽  
Vol 63 (1) ◽  
pp. 249-261
Author(s):  
Pablo Cubides Kovacsics ◽  
Deirdre Haskell

AbstractWe show quantifier elimination theorems for real closed valued fields with separated analytic structure and overconvergent analytic structure in their natural one-sorted languages and deduce that such structures are weakly o-minimal. We also provide a short proof that algebraically closed valued fields with separated analytic structure (in any rank) are C-minimal.


2016 ◽  
Vol 81 (3) ◽  
pp. 887-900 ◽  
Author(s):  
JIZHAN HONG

AbstractIt is proved in this article that the theory of separably closed nontrivially valued fields of characteristic p > 0 and imperfection degree e > 0 (e ≤ ∞) has quantifier elimination in the language ${{\cal L}_{p,{\rm{div}}}} = \{ + , - , \times ,0,1\} \cup {\{ {\lambda _{n,j}}(x;{y_1}, \ldots ,{y_n})\} _{0 \le n < \omega ,0 \le j < {p^n}}} \cup \{ |\}$; in particular, when e is finite, the corresponding theory has quantifier elimination in the language ${\cal L} = \{ + , - , \times ,0,1\} \cup \{ {b_1}, \ldots ,{b_e}\} \cup {\{ {\lambda _{e,j}}(x;{b_1}, \ldots ,{b_e})\} _{0 \le j < {p^e}}} \cup \{ |\}$.


1988 ◽  
Vol 53 (3) ◽  
pp. 905-911 ◽  
Author(s):  
Philip Scowcroft

This note arose out of my efforts to understand results of van den Dries, Denef, and Weispfenning on definable Skolem functions in the elementary theory of Qp. The first person to prove their existence was van den Dries, who devised and applied a model-theoretic criterion for theories, admitting elimination of quantifiers, which also admit definable Skolem functions [3]. The proof, though elegant, does not describe how one defines the Skolem functions. In the particular case of Qp, Denef found an ingenious, easily described method for writing out the definitions [2, pp. 14–15]. Unfortunately, his argument directly applies only in the following special case: ifand there is a fixed m ≥ 1 such thatfor all , then can be given as a definable function of . While this special case includes many of interest, van den Dries' theorem seems more general. Weispfenning suggested how his results on primitive-recursive quantifier elimination could produce algorithms yielding definitions of Skolem functions in the specific theories van den Dries considered [10, pp. 470–471]. Though these algorithms provide a more concrete version of van den Dries' theorem, and do not suffer the lack of generality of Denef's result, Weispfenning's argument is extremely subtle and applies only to certain theories of valued fields.


2015 ◽  
Vol 80 (1) ◽  
pp. 85-99 ◽  
Author(s):  
FRANZISKA JAHNKE ◽  
JOCHEN KOENIGSMANN

AbstractIn this note we investigate the question when a henselian valued field carries a nontrivial ∅-definable henselian valuation (in the language of rings). This is clearly not possible when the field is either separably or real closed, and, by the work of Prestel and Ziegler, there are further examples of henselian valued fields which do not admit a ∅-definable nontrivial henselian valuation. We give conditions on the residue field which ensure the existence of a parameter-free definition. In particular, we show that a henselian valued field admits a nontrivial henselian ∅-definable valuation when the residue field is separably closed or sufficiently nonhenselian, or when the absolute Galois group of the (residue) field is nonuniversal.


Sign in / Sign up

Export Citation Format

Share Document