A note on definable Skolem functions

1988 ◽  
Vol 53 (3) ◽  
pp. 905-911 ◽  
Author(s):  
Philip Scowcroft

This note arose out of my efforts to understand results of van den Dries, Denef, and Weispfenning on definable Skolem functions in the elementary theory of Qp. The first person to prove their existence was van den Dries, who devised and applied a model-theoretic criterion for theories, admitting elimination of quantifiers, which also admit definable Skolem functions [3]. The proof, though elegant, does not describe how one defines the Skolem functions. In the particular case of Qp, Denef found an ingenious, easily described method for writing out the definitions [2, pp. 14–15]. Unfortunately, his argument directly applies only in the following special case: ifand there is a fixed m ≥ 1 such thatfor all , then can be given as a definable function of . While this special case includes many of interest, van den Dries' theorem seems more general. Weispfenning suggested how his results on primitive-recursive quantifier elimination could produce algorithms yielding definitions of Skolem functions in the specific theories van den Dries considered [10, pp. 470–471]. Though these algorithms provide a more concrete version of van den Dries' theorem, and do not suffer the lack of generality of Denef's result, Weispfenning's argument is extremely subtle and applies only to certain theories of valued fields.

2017 ◽  
Vol 82 (2) ◽  
pp. 474-488
Author(s):  
MOSHE JARDEN ◽  
ALEXANDRA SHLAPENTOKH

AbstractWe discuss the connection between decidability of a theory of a large algebraic extensions of ${\Bbb Q}$ and the recursiveness of the field as a subset of a fixed algebraic closure. In particular, we prove that if an algebraic extension K of ${\Bbb Q}$ has a decidable existential theory, then within any fixed algebraic closure $\widetilde{\Bbb Q}$ of ${\Bbb Q}$, the field K must be conjugate over ${\Bbb Q}$ to a field which is recursive as a subset of the algebraic closure. We also show that for each positive integer e there are infinitely many e-tuples $\sigma \in {\text{Gal}}\left( {\Bbb Q} \right)^e $ such that the field $\widetilde{\Bbb Q}\left( \sigma \right)$ is primitive recursive in $\widetilde{\Bbb Q}$ and its elementary theory is primitive recursively decidable. Moreover, $\widetilde{\Bbb Q}\left( \sigma \right)$ is PAC and ${\text{Gal}}\left( {\widetilde{\Bbb Q}\left( \sigma \right)} \right)$ is isomorphic to the free profinite group on e generators.


2016 ◽  
Vol 81 (3) ◽  
pp. 887-900 ◽  
Author(s):  
JIZHAN HONG

AbstractIt is proved in this article that the theory of separably closed nontrivially valued fields of characteristic p > 0 and imperfection degree e > 0 (e ≤ ∞) has quantifier elimination in the language ${{\cal L}_{p,{\rm{div}}}} = \{ + , - , \times ,0,1\} \cup {\{ {\lambda _{n,j}}(x;{y_1}, \ldots ,{y_n})\} _{0 \le n < \omega ,0 \le j < {p^n}}} \cup \{ |\}$; in particular, when e is finite, the corresponding theory has quantifier elimination in the language ${\cal L} = \{ + , - , \times ,0,1\} \cup \{ {b_1}, \ldots ,{b_e}\} \cup {\{ {\lambda _{e,j}}(x;{b_1}, \ldots ,{b_e})\} _{0 \le j < {p^e}}} \cup \{ |\}$.


2001 ◽  
Vol 66 (4) ◽  
pp. 1865-1883 ◽  
Author(s):  
Chaz Schlindwein

One of the main goals in the theory of forcing iteration is to formulate preservation theorems for not collapsing ω1 which are as general as possible. This line leads from c.c.c. forcings using finite support iterations to Axiom A forcings and proper forcings using countable support iterations to semi-proper forcings using revised countable support iterations, and more recently, in work of Shelah, to yet more general classes of posets. In this paper we concentrate on a special case of the very general iteration theorem of Shelah from [5, chapter XV]. The class of posets handled by this theorem includes all semi-proper posets and also includes, among others, Namba forcing.In [5, chapter XV] Shelah shows that, roughly, revised countable support forcing iterations in which the constituent posets are either semi-proper or Namba forcing or P[W] (the forcing for collapsing a stationary co-stationary subset ofwith countable conditions) do not collapse ℵ1. The iteration must contain sufficiently many cardinal collapses, for example, Levy collapses. The most easily quotable combinatorial application is the consistency (relative to a Mahlo cardinal) of ZFC + CH fails + whenever A ∪ B = ω2 then one of A or B contains an uncountable sequentially closed subset. The iteration Shelah uses to construct this model is built using P[W] to “attack” potential counterexamples, Levy collapses to ensure that the cardinals collapsed by the various P[W]'s are sufficiently well separated, and Cohen forcings to ensure the failure of CH in the final model.In this paper we give details of the iteration theorem, but we do not address the combinatorial applications such as the one quoted above.These theorems from [5, chapter XV] are closely related to earlier work of Shelah [5, chapter XI], which dealt with iterated Namba and P[W] without allowing arbitrary semi-proper forcings to be included in the iteration. By allowing the inclusion of semi-proper forcings, [5, chapter XV] generalizes the conjunction of [5, Theorem XI.3.6] with [5, Conclusion XI.6.7].


1990 ◽  
Vol 33 (2) ◽  
pp. 169-180 ◽  
Author(s):  
Juan A. Gatica ◽  
Gaston E. Hernandez ◽  
P. Waltman

The boundary value problemis studied with a view to obtaining the existence of positive solutions in C1([0, 1])∩C2((0, 1)). The function f is assumed to be singular in the second variable, with the singularity modeled after the special case f(x, y) = a(x)y−p, p>0.This boundary value problem arises in the search of positive radially symmetric solutions towhere Ω is the open unit ball in ℝN, centered at the origin, Γ is its boundary and |x| is the Euclidean norm of x.


2017 ◽  
Vol 82 (1) ◽  
pp. 347-358 ◽  
Author(s):  
PABLO CUBIDES KOVACSICS ◽  
LUCK DARNIÈRE ◽  
EVA LEENKNEGT

AbstractThis paper addresses some questions about dimension theory for P-minimal structures. We show that, for any definable set A, the dimension of $\bar A\backslash A$ is strictly smaller than the dimension of A itself, and that A has a decomposition into definable, pure-dimensional components. This is then used to show that the intersection of finitely many definable dense subsets of A is still dense in A. As an application, we obtain that any definable function $f:D \subseteq {K^m} \to {K^n}$ is continuous on a dense, relatively open subset of its domain D, thereby answering a question that was originally posed by Haskell and Macpherson.In order to obtain these results, we show that P-minimal structures admit a type of cell decomposition, using a topological notion of cells inspired by real algebraic geometry.


1973 ◽  
Vol 5 (02) ◽  
pp. 217-241 ◽  
Author(s):  
A. M. Walker

Let observations (X 1, X 2, …, Xn ) be obtained from a time series {Xt } such that where the ɛt are independently and identically distributed random variables each having mean zero and finite variance, and the gu (θ) are specified functions of a vector-valued parameter θ. This paper presents a rigorous derivation of the asymptotic distributions of the estimators of A, B, ω and θ obtained by an approximate least-squares method due to Whittle (1952). It is a sequel to a previous paper (Walker (1971)) in which a similar derivation was given for the special case of independent residuals where gu (θ) = 0 for u &gt; 0, the parameter θ thus being absent.


1971 ◽  
Vol 23 (2) ◽  
pp. 315-324 ◽  
Author(s):  
A. McD. Mercer

1. If f is a real-valued function possessing a Taylor series convergent in (a — R, a + R), then it satisfies the following operational identity1.1in which D2 = d2/du2. Furthermore, when g is a solution of y″ + λ2y = 0 in (a – R, a + R), then g is such a function and (1.1) specializes to1.2In this note we generalize these results to the real Euclidean space EN, our conclusions being Theorems 1 and 2 below. Clearly, (1.2) is a special case of (1.1) but in higher-dimensional space it is of interest to allow g, now a solution of1.3to possess singularities at isolated points away from the origin. It is then necessary to consider not only a neighbourhood of the origin but annular regions also.


1959 ◽  
Vol 11 ◽  
pp. 593-600
Author(s):  
P. B. Kennedy

If f(z) is regular in |z| < 1, the expressionis called the characteristic of f(z). This is the notation of Nevanlinna (4) for the special case of regular functions; in this note it will not be necessary to discuss meromorphic functions. If m(r,f) is bounded for 0 < r < 1, then f(z) is called quasi-bounded in |z| < 1. In particular, every bounded function is quasibounded. The class Q of quasi-bounded functions is important because, for instance, a “Fatou theorem” holds for such functions (4, p. 134).


1979 ◽  
Vol 22 (3) ◽  
pp. 363-366
Author(s):  
Colin Bennett ◽  
Karl Rudnick ◽  
Jeffrey D. Vaaler

In this note the best uniform approximation on [—1,1] to the function |x| by symmetric complex valued linear fractional transformations is determined. This is a special case of the more general problem studied in [1]. Namely, for any even, real valued function f(x) on [-1,1] satsifying 0 = f ( 0 ) ≤ f (x) ≤ f (1) = 1, determine the degree of symmetric approximationand the extremal transformations U whenever they exist.


1982 ◽  
Vol 34 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Eric Sawyer

The main purpose of this note is to prove a special case of the following conjecture.Conjecture. If F is holomorphic on the unit ball Bn in Cn and has positive real part, then F is in Hp(Bn) for 0 < p < ½(n + 1).Here Hp(Bn) (0 < p < ∞) denote the usual Hardy spaces of holomorphic functions on Bn. See below for definitions. We remark that the conjecture is known for 0 < p < 1 and that some evidence for it already exists in the literature; for example [1, Theorems 3.11 and 3.15] where it is shown that a particular extreme element of the convex cone of functionsis in Hp(B2) for 0 < p < 3/2.


Sign in / Sign up

Export Citation Format

Share Document