scholarly journals Multibody dynamic models in biomechanics: modelling issues and a new model

2012 ◽  
Vol 3 (2) ◽  
pp. 128-137
Author(s):  
G. Fekete ◽  
B. Csizmadia ◽  
P. De Baets ◽  
M.A. Wahab

In the surgical process of total knee replacement (TKR), it is well known that the three types of failureswhich are; a) unable to reproduce normal knee function, b) bone-implant interface failure c) wear duringuse. These failures are certainly due to the motion and the load that influence the prosthesis components.In this study, the modelling questions of the human knee joint will be discussed in relation only to themultibody dynamics models. Firstly, a summary is presented about the relevant literature, where themodels with their different features are presented and evaluated. The existing models are mainly focusedon the investigation of the ligaments (linear of non-linear properties), the description of the contact path,and contact forces during the motion, kinematics (rotation, abduction and adduction) and even the wearmechanism of the knee joint. The primal advantages of the multibody dynamics models are the easyadaptability in the mechanical parameters to carry out simulations and the connection with CAE programsthat helps the design of new prostheses. A new multibody model is also presented by the authors.

Author(s):  
M Machado ◽  
P Flores ◽  
J Ambrosio ◽  
A Completo

The goal of this work is to study the influence of the contact force model, contact geometry, and contact material properties on the dynamic response of a human knee joint model. For this purpose, a multibody knee model composed by two rigid bodies, the femur and the tibia, and four non-linear spring elements that represent the main knee ligaments, is considered. The contact force models used were the Hertz, the Hunt–Crossley, and the Lankarani–Nikravesh approaches. Results obtained from computational simulations show that Hertz law is less suitable to describe the dynamic response of the cartilage contact, because this pure elastic model does not account for the viscoelastic nature of the human articulations. Since knee can exhibit conformal and non-conformal contact scenarios, three different geometrical configurations for femur–tibia contact are considered, that is convex–convex sphere contact, convex–concave sphere contact, and convex sphere–plane contact. The highest level of contact forces is obtained for the case of convex–convex sphere contact. As far as the influence of the material contact properties is concerned, the dynamic response of a healthy and natural knee is analysed and compared with three pathological and two artificial knee models. The obtained results demonstrate that the presence of the cartilage reduces significantly the knee contact forces.


2021 ◽  
Vol 11 (6) ◽  
pp. 2541
Author(s):  
Kheireddine Zehouani ◽  
Oldal István

The human knee joint usually suffers progressive deterioration with time. The conventional cure of this issue is to replace it with an alternate knee by applying the prosthesis implant. The reason is that the process causes the abrasion of the different materials rather than just sliding or rolling. This study aims to develop the numerical measurement of the knee prosthesis’s geometry, which fulfils the mechanical requirements of the human knee. The MSC.ADAMS programme was applied to demonstrate the movement of the human knee joint in terms of rotation and flexion. The changes between the condyles of the developed multibody of the prosthesis related to the flexion angle ranging from 20–120° were investigated and presented. The boundary conditions were determined, and simulations performed using the ADAM’s programme. An average value of 0.7 was reached for the slip ration, with the maximum getting up to 0.79. An angle between 110–120° for the flexion angle was obtained. It can be said that the application of the multibody model saves time as there is no involvement of the tibia and the femur as required for the knee prosthesis. More importantly, as the application of the test machine is omitted in our process, our model’s approximations to a human knee are carried out directly. Without cost, several measurements for the knee prosthesis could be made and repaired. The study results provide the necessary insight for future tests regarding the movement of the knee joint.


Author(s):  
Dumitru I. Caruntu

This is a survey on 3-D dynamic and quasi-static human knee joint modeling. Anatomical surface representation, contact modeling, ligament structure, and solution algorithm are reviewed. Understanding knee joint biomechanics is important for total knee replacement and rehabilitation exercise design, ligament reconstruction, and cartilage damage. Knee models were proposed mostly in the last two decades. They aimed normal activities and rehabilitation exercises, and sought muscle, ligament, and joint contact forces. Consisting of two joints, tibio-femoral (TF) and patello-femoral (PF), the human knee 3-D models were PF, TF [1–3], and both TF and PF [4–7]. Models were static, quasi-static, and dynamic, including the entire, partial, or none of the ligament structure. Contact models of the knee were rigid or deformable. Both natural knees and replacement models were reported. Different groups of muscles were considered.


Author(s):  
Margarida Machado ◽  
Paulo Flores

The goal of this work is to study the influence of the contact force model and contact material properties on the dynamic response of a human knee joint. For this purpose, a multibody knee model composed by two rigid bodies, the femur and the tibia, and four nonlinear spring elements that represent the main knee ligaments, is considered. The contact geometrical profiles are extracted from medical images and fitted using spline functions. The tibia motions are modeled, not using a conventional kinematic joint, but rather in terms of the action of the ligaments and potential contact between the bones. Besides, an external force is applied on the center of mass of the tibia in order to simulate the force of the quadriceps muscle group. When a contact is detected, a continuous contact force law is applied. The contact force laws studied are the Hertz, the Hunt-Crossley and the Lankarani-Nikravesh models. Results obtained from computational simulations show that Hertz law is less suitable to describe the dynamic response of the cartilage contact, because this pure elastic model does not account for the viscoelastic nature of the human articulations. Moreover, the effect of the amplitude of the external applied force on the dynamic response of the knee joint model is also evaluated. The obtained results show that the increase of the amplitude of the external applied force increases the contact indentations and lead to an earlier first impact. As far as to the influence of the material contact properties is concerned, the dynamic response of a healthy and natural knee is analyzed and compared with three pathological and two artificial knee models. Results demonstrate that the presence of the cartilage reduces significantly the knee contact forces.


Author(s):  
Dumitru I. Caruntu

This is a review paper on human knee joint biomechanics modeling. Dynamic models and quasi-static models reported lately in the literature are included in this survey. Anatomical surface representation, contact modeling, ligament structure, and solution algorithm of these models are reviewed.


2009 ◽  
Vol 60 (3) ◽  
pp. 459-478 ◽  
Author(s):  
Margarida Machado ◽  
Paulo Flores ◽  
J. C. Pimenta Claro ◽  
Jorge Ambrósio ◽  
Miguel Silva ◽  
...  

1988 ◽  
Vol 41 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Mohamed Samir Hefzy ◽  
Edward S. Grood

This paper is a review of static and dynamic models of the human knee joint. Both phenomenological and anatomically based models are discussed. The phenomenological models can be classified into two groups: first, models which consider the human knee to be a simple hinge joint and, second, rheological models. The simple hinge models have generally been used in larger models developed to predict human body dynamics during gait activities. The rheological models, which describe the knee as an equivalent viscoelastic hinge, have been used to describe the response of the knee joint during dynamic loading conditions. Anatomically based models have been used to predict the kinematics and kinetics of the knee and its structural components. The majority of kinetic models have treated static and quasistatic equilibrium conditions, and only a few have addressed nonequilibrium dynamic loading. In reviewing the static and quasistatic models, we have divided them into four groups. First, models developed to determine the forces in the muscles and the ligaments at the knee joint during various activities, second, models developed to determine the forces in the ligaments as a function of joint position, third, models used to determine the contact stresses between the femur and the tibia, and, fourth, more comprehensive models developed to study the stiffness and load–displacement characteristics of the knee joint which include both ligamentous structures and the geometric constraints of the knee. In our survey, we found few models of the patello-femoral joint. A more complete model of the human knee joint describing the interactions between the tibia, femur, patella, and fibula still needs to be developed. On the other hand, the geometric and mechanical properties of a single real knee, required to validate any model are not presently available.


2018 ◽  
Vol 00 (1) ◽  
pp. 109-118
Author(s):  
Enas Y. Abdullah ◽  
◽  
Naktal Moid Edan ◽  
Athraa N. Kadhim ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document