On the Contact Modeling and Analysis of the Human Knee Joint

Author(s):  
Margarida Machado ◽  
Paulo Flores

The goal of this work is to study the influence of the contact force model and contact material properties on the dynamic response of a human knee joint. For this purpose, a multibody knee model composed by two rigid bodies, the femur and the tibia, and four nonlinear spring elements that represent the main knee ligaments, is considered. The contact geometrical profiles are extracted from medical images and fitted using spline functions. The tibia motions are modeled, not using a conventional kinematic joint, but rather in terms of the action of the ligaments and potential contact between the bones. Besides, an external force is applied on the center of mass of the tibia in order to simulate the force of the quadriceps muscle group. When a contact is detected, a continuous contact force law is applied. The contact force laws studied are the Hertz, the Hunt-Crossley and the Lankarani-Nikravesh models. Results obtained from computational simulations show that Hertz law is less suitable to describe the dynamic response of the cartilage contact, because this pure elastic model does not account for the viscoelastic nature of the human articulations. Moreover, the effect of the amplitude of the external applied force on the dynamic response of the knee joint model is also evaluated. The obtained results show that the increase of the amplitude of the external applied force increases the contact indentations and lead to an earlier first impact. As far as to the influence of the material contact properties is concerned, the dynamic response of a healthy and natural knee is analyzed and compared with three pathological and two artificial knee models. Results demonstrate that the presence of the cartilage reduces significantly the knee contact forces.


Author(s):  
M Machado ◽  
P Flores ◽  
J Ambrosio ◽  
A Completo

The goal of this work is to study the influence of the contact force model, contact geometry, and contact material properties on the dynamic response of a human knee joint model. For this purpose, a multibody knee model composed by two rigid bodies, the femur and the tibia, and four non-linear spring elements that represent the main knee ligaments, is considered. The contact force models used were the Hertz, the Hunt–Crossley, and the Lankarani–Nikravesh approaches. Results obtained from computational simulations show that Hertz law is less suitable to describe the dynamic response of the cartilage contact, because this pure elastic model does not account for the viscoelastic nature of the human articulations. Since knee can exhibit conformal and non-conformal contact scenarios, three different geometrical configurations for femur–tibia contact are considered, that is convex–convex sphere contact, convex–concave sphere contact, and convex sphere–plane contact. The highest level of contact forces is obtained for the case of convex–convex sphere contact. As far as the influence of the material contact properties is concerned, the dynamic response of a healthy and natural knee is analysed and compared with three pathological and two artificial knee models. The obtained results demonstrate that the presence of the cartilage reduces significantly the knee contact forces.



2012 ◽  
Vol 3 (2) ◽  
pp. 128-137
Author(s):  
G. Fekete ◽  
B. Csizmadia ◽  
P. De Baets ◽  
M.A. Wahab

In the surgical process of total knee replacement (TKR), it is well known that the three types of failureswhich are; a) unable to reproduce normal knee function, b) bone-implant interface failure c) wear duringuse. These failures are certainly due to the motion and the load that influence the prosthesis components.In this study, the modelling questions of the human knee joint will be discussed in relation only to themultibody dynamics models. Firstly, a summary is presented about the relevant literature, where themodels with their different features are presented and evaluated. The existing models are mainly focusedon the investigation of the ligaments (linear of non-linear properties), the description of the contact path,and contact forces during the motion, kinematics (rotation, abduction and adduction) and even the wearmechanism of the knee joint. The primal advantages of the multibody dynamics models are the easyadaptability in the mechanical parameters to carry out simulations and the connection with CAE programsthat helps the design of new prostheses. A new multibody model is also presented by the authors.



Author(s):  
Dumitru I. Caruntu

This is a survey on 3-D dynamic and quasi-static human knee joint modeling. Anatomical surface representation, contact modeling, ligament structure, and solution algorithm are reviewed. Understanding knee joint biomechanics is important for total knee replacement and rehabilitation exercise design, ligament reconstruction, and cartilage damage. Knee models were proposed mostly in the last two decades. They aimed normal activities and rehabilitation exercises, and sought muscle, ligament, and joint contact forces. Consisting of two joints, tibio-femoral (TF) and patello-femoral (PF), the human knee 3-D models were PF, TF [1–3], and both TF and PF [4–7]. Models were static, quasi-static, and dynamic, including the entire, partial, or none of the ligament structure. Contact models of the knee were rigid or deformable. Both natural knees and replacement models were reported. Different groups of muscles were considered.



2022 ◽  
Vol 43 (1) ◽  
pp. 93-112
Author(s):  
Kaiming Zhang ◽  
Xudong Zheng ◽  
Zhang Chen ◽  
Bin Liang ◽  
Tianshu Wang ◽  
...  

AbstractThe non-smooth dynamic model of an unmanned bicycle is established to study the contact-separate and stick-slip non-smooth phenomena between wheels and the ground. According to the Carvallo-Whipple configuration, the unmanned bicycle is reduced to four rigid bodies, namely, rear wheel, rear frame, front fork, and front wheel, which are connected by perfect revolute joints. The interaction between each wheel and the ground is simplified as the normal contact force and the friction force at the contact point, and these forces are described by the Hunt-Crossley contact force model and the LuGre friction force model, respectively. According to the characteristics of flat and curved pavements, calculation methods for contact forces and their generalized forces are presented. The dynamics of the system is modeled by the Lagrange equations of the first kind, a numerical solution algorithm of the dynamic equations is presented, and the Baumgarte stabilization method is used to restrict the drift of the constraints. The correctness of the dynamic model and the numerical algorithm is verified in comparison with the previous studies. The feasibility of the proposed model is demonstrated by simulations under different motion states.



2018 ◽  
Vol 00 (1) ◽  
pp. 109-118
Author(s):  
Enas Y. Abdullah ◽  
◽  
Naktal Moid Edan ◽  
Athraa N. Kadhim ◽  
◽  
...  


Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.





1985 ◽  
Vol 18 (7) ◽  
pp. 541
Author(s):  
Ph. Edixhoven ◽  
R. Huiskes ◽  
Th.J.G. van Rens ◽  
T.J.J.H. Slooff


2014 ◽  
Vol 15 (5) ◽  
pp. 7250-7265 ◽  
Author(s):  
Congming Zhang ◽  
Xiaochun Wei ◽  
Chongwei Chen ◽  
Kun Cao ◽  
Yongping Li ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document