scholarly journals IN SILICO STUDY OF ACETYLCHOLINESTERASE INHIBITION IN ALZHEIMER'S DISEASE USING CHEMICAL CONSTITUENTS OF CANNABIS

Author(s):  
Roxanne Vasquez ◽  
Teobaldo Cuya

In recent years, studies have shown that some chemical derivatives of the cannabis plant help in the prevention and treatment of neurological diseases. Alzheimer's disease (AD) is a progressive form of dementia, which there is no cure. Therefore, its pharmacological treatment is crucial as it can help reduce the symptoms such as memory loss. Due to the limited choices of drug treatments for AD, this research will be using 9 chemical derivatives of the Cannabis plant as potential drug alternative. There is reduced levels of acetylcholine (ACh) neurotransmitter with AD patients, due to its hydrolysis carried out by the enzyme acetylcholinesterase (AChE). Thus, the focus of this in silico study will be if these 9 substances have the capacity to act as a human enzyme acetylcholinesterase inhibitor (HssAChE). Results shows that at least one Cannabis compound “Cannabicyclol” have a comparable binding energy to the commercial drug Donepezil. Moreover, the results gives insights about the what are the relevant residues in the binding process and the potential therapeutic properties of the cannabis compounds relating to the AD treatment.

JSMARTech ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 36-40
Author(s):  
Nala Mawaddani ◽  
◽  
Natalia RK Wibowo ◽  
Qumaira HH Nadhira ◽  
Ratih Ayu Pramifta ◽  
...  

2021 ◽  
Author(s):  
Sampath Kumar L Rompicherla ◽  
Karthik Arumugam ◽  
Sree Lalitha Bojja ◽  
Nitesh Kumar ◽  
Mallikarjuna Rao Chamallamudi

Abstract With the increasing ageing population and progressive nature of the disease, Alzheimer's disease (AD) poses to be an oncoming epidemic with limited therapeutic strategies. It is characterized by memory loss, behavioral instability, impaired cognitive function, predominantly, cognitive inability manifested due to the accumulation of β-amyloid, with malfunctioned cholinergic system. Rivastigmine, a reversible dual cholinesterase inhibitor is more tolerable and widely used choice of drug for AD. However, rivastigmine being hydrophilic and undergoing first pass metabolism, exhibits low CNS bioavailability. Nanoformulations including liposomes and PLGA nanoparticles can encapsulate hydrophilic drugs and deliver efficiently to brain. Besides, the nasal route is receiving considerable attention recently, due to its direct access to brain. Therefore, the present study attempts to evaluate the pharmacokinetic and pharmacodynamic properties of nasal liposomal and PLGA nanoparticle formulations of rivastigmine in scopolamine induced amnesia model and validate the best formulation by employing pharmacokinetic and pharmacodynamic (PK-PD) modelling. Nasal liposomal rivastigmine formulation showed the best pharmacokinetic features with rapid onset of action (Tmax=5 minutes), higher Cmax (1489.5 ± 620.71), enhanced systemic bioavailability (F=118.65 ± 23.54; AUC= 35921.75 ± 9559.46), increased half-life (30.92 ± 8.38 minutes), and reduced clearance rate (Kel (1/min) = 0.0224 ± 0.006) compared to oral rivastigmine (Tmax= 15 minutes; Cmax= 56.29 ± 27.05; F=4.39 ± 1.82; AUC=1663.79 ± 813.54; t1/2= 13.48 ± 5.79; Kel (1/min) =0.0514 ± 0.023). Further, the liposomal formulation significantly rescued the memory deficit induced by scopolamine superior to other formulations as assessed in Morris water maze and passive avoidance tasks. PK-PD modelling demonstrated strong correlation between the pharmacokinetic parameters and acetylcholinesterase inhibition of liposomal formulation.


Author(s):  
Vincentsia Vienna Vanessa ◽  
Siau Hui Mah

: Alzheimer's disease is a neurodegenerative disorder that results in progressive and irreversible central nervous system impairment, which has become one of the severe issues recently. The most successful approach of Alzheimer’s treatment is the administration of cholinesterase inhibitors to prevent the hydrolysis of acetylcholine and subsequently improve the cholinergic postsynaptic transmission. This review highlights a class of heterocycle, namely xanthone and its remarkable acetylcholinesterase inhibitory activities. Naturally occurring xanthones, including oxygenated, prenylated, pyrano and glycosylated xanthones exhibited promising inhibition effects towards acetylcholinesterase. Interestingly, synthetic xanthone derivatives with complex substituents such as alkyl, pyrrolidine, piperidine and morpholine have shown greater acetylcholinesterase inhibition activities. Structure-activity relationship of xanthones revealed that the type and position of substituent(s) attached to the xanthone moiety influenced their acetylcholinesterase inhibition activities where hydrophobic moiety will lead to an improved activity by contributing the π-π interactions, as well as the hydroxy substituent(s) by forming hydrogen-bond interactions. Thus, further studies including quantitative structure-activity relationship, in vivo and clinical validation studies are crucial for the development of xanthones into novel anti-Alzheimer's disease drugs.


RSC Advances ◽  
2017 ◽  
Vol 7 (54) ◽  
pp. 33944-33952 ◽  
Author(s):  
Denise Cristian Ferreira Neto ◽  
Marcelle de Souza Ferreira ◽  
Elaine da Conceição Petronilho ◽  
Josélia Alencar Lima ◽  
Sirlene Oliveira Francisco de Azeredo ◽  
...  

Molecular docking, in silico studies and NMR show that the new guanylhydrazone is a promising compound for the treatment of Alzheimer's disease.


2021 ◽  
Author(s):  
Priyanka Sarkar ◽  
Premkumar Jayaraj ◽  
Ketaki Patwardhan ◽  
Samiksha Yeole ◽  
Sourajit Das ◽  
...  

Abstract The process of ageing accompanies several metabolic diseases. With ageing, fats accumulate to increase the visceral and abdominal adiposity leading to hyperinsulinemia, insulin resistance, obesity and several other diseases. Drosophila melanogaster is often used to study the ageing process and its related disorders. Therefore in this study, we performed an in silico analysis to relate the process of ageing and insulin resistance. We analyzed data of insulin resistant drosophila from GEO database and compared it with the data from the literature survey. We observed that 98 genes were common in both the models, and they showed gene modulations related to metabolic pathways, fatty acid metabolism, insulin resistance, and neural receptor-ligand binding pathways. Analysis of the REACTOME database against human data revealed that TRKB signalling pathway is commonly affected. TRKB mediated BDNF pathway is a major regulator of memory loss. We further analyzed the common genes in Alzheimer's disease and compared the fly data with human data to identify the diseases related to these common genes. Then we performed a literature survey to provide protective mechanisms for TRKB signalling pathway activation, mediated through polyphenols. We treated the flies with sesamol conjugated lipoic acid derivative (a phenolic compound) at hormetic doses to evaluate its effect on the memory of flies.


Author(s):  
Sarita Negi

Alzheimer's disease (AD) is a neurodegenerative disease that generally begins leisurely and gets worse with time. Alzheimer’s disease (AD) dementia is the specific beginning of age-related declination of cognitive abilities and function, which eventually leads to death. Alzheimer’s disease (AD) is one of the neurodeteriorating disorders which is one of the mostcritical complications that our current health care system faces. The phenomenon of molecular docking has progressively become a strong tool in the field of pharmaceutical research including drug discovery. The aim of the presentin silico study was to inhibit the expression of KLK-6 (kallikrein-6) which is a target or receptor protein by its interaction with three distinct secondary metabolites for treating Alzheimer's disease (AD) through molecular docking. Methods: The in-silico study was based on molecular docking. Docking was executed amidst ligands- Quercetin (CID: 5280343), Ricinoleic Acid (CID: 643684), Phyltetralin (CID: 11223782), and the target or receptor protein Kallikrein-6 (PDB ID: 1LO6). The protein and the ligands were downloaded in the required format. Through PyRx, the ligands were virtually screened after importing them in the PyRx window. The results of PyRx and SwissADME were analyzed and the best ligand was finalized. Among the three, Phyltetralin was the best ligand contrary to KLK-6 having minimum binding energy and it was following Lipinski’s five rules along with 0 violations. Results: The final docking was carried out between Phyltetralin and KLK-6 through AutoDock Vina. The outcome showed 9 poses with distinct binding energy, RSMD LB (root mean square deviation lower bound) and RSMD UB (root mean square deviation upper bound). With the help of PyMOL which is an open-access tool for molecular visualization, the interaction amidst Phyltetralin and KLK-6 can be visualized. Conclusion: Based on this in silico study it can be concluded that KLK-6 (kallikrein-6) which is responsible for causing AD can be inhibited by ligand Phyltetralin and for the treatment of AD, phyltetralin might act as a potential drug. Thus, in future studies, Phyltetralin from natural sources can prevent Alzheimer's disease and can be proved as a promising and efficient drug for treating Alzheimer's disease.


Sign in / Sign up

Export Citation Format

Share Document