scholarly journals Non-destructive stress analysis of porcelain-fused-to-metal crown. Part 2. X-ray diffraction and radiograph stress measurement of various gold alloys for porcelain fusing.

1989 ◽  
Vol 33 (1) ◽  
pp. 57-63
Author(s):  
Yoshihiro Terada ◽  
Tetsuya Tokumaru ◽  
Tatsuo Yoshida ◽  
Ryozo Hirayasu
2020 ◽  
Vol 25 ◽  
Author(s):  
Bras Senra de Oliveira ◽  
Lino Alberto Soares Rodrigues ◽  
Ednelson Silva Costa ◽  
Eduardo de Magalhães Braga ◽  
Marcos Allan Leite dos Reis

Abstract: This work is distinguished by searching for a non-destructive technology, and X-ray diffraction was validated by the XStress 3000 analyser. Measurements of residual stresses in the welded zone of premium pearlitic rails was performed, rail surface hardness of 370 HB and 0.79% carbon content. The welding of the rails was done by flash butt process, performed by Schlatter GAAS 80 stationary equipment. The results of the tensile and compressive stress measurements identified the residual stresses in the welded zone, with specific zones of tensile stresses misplaced at the weld center, with values up to 391 MPa, and compressive stresses, with values up to -166 MPa, as it moves away rails weld center. An important point of this study is the residual stress measurement considering a complete welding process, including: pre-grinding, flash butt welding, heat treatment, finishing grinding and straightening. Lastly, was observed the welding technique potentially can induce residual stresses at rails.


2000 ◽  
Vol 33 (4) ◽  
pp. 1059-1066 ◽  
Author(s):  
J.-D. Kamminga ◽  
Th. H. de Keijser ◽  
E. J. Mittemeijer ◽  
R. Delhez

New methods of diffraction stress analysis of polycrystalline materials, consisting of cubic elastically anisotropic crystallites, are proposed and compared with existing methods. Whereas for the existing methods knowledge of the diffraction elastic constants is presupposed, three new methods are presented that require only knowledge of the (macroscopic) mechanical elastic constants. The stress values obtained with these new methods on the basis of the mechanical elastic constants are more reliable than those obtained with the methods on the basis of the diffraction elastic constants. New and existing methods are illustrated by means of measurements of X-ray diffraction from a magnetron-sputtered TiN layer.


2005 ◽  
Vol 490-491 ◽  
pp. 1-6 ◽  
Author(s):  
Bob B. He ◽  
Ke Wei Xu ◽  
Fei Wang ◽  
Ping Huang

This paper introduces the recent progress in two-dimensional X-ray diffraction as well as its applications in microstructure and residual stress analysis. Based on the matrix transformation between diffraction space, detector space and sample space, the unit vector of the diffraction vector can be expressed in the sample space corresponding to all the geometric parameters and Bragg conditions. The same transformation matrix can be used for texture and stress analysis. The fundamental equations for both stress measurement and texture measurement are developed with the matrix transformation defined for the two-dimensional diffraction. Stress measurement using twodimensional detector is based on a direct relationship between the stress tensor and the diffraction cone distortion. The two-dimensional detector collects texture data and background values simultaneously for multiple poles and multiple directions.


2012 ◽  
Vol 706-709 ◽  
pp. 1673-1678 ◽  
Author(s):  
Shouichi Ejiri ◽  
Toshihiko Sasaki ◽  
Yukio Hirose

The residual stress measurement by the conventional X-ray diffraction was formulated on the assumption that a specimen from polycrystalline materials was quasi-isotropic and homogeneous, and the stress was biaxial and almost constant within the X-ray penetration depth. Therefore, it was not available to analyze the stress state of the textured materials by the conventional measurement as a general rule. In resent years, advanced methods have been proposed for the X-ray stress measurement of textured materials. In some methods, it is assumed that the X-ray elastic constant is derived from the crystallite orientation distribution function of textured materials for solving the first anisotropic problem. However, there is a nonlinear problem in the stress analysis from the measured lattice strain. In present study, the X-ray elastic constants were averaged as the expected value around the normal direction of the X-ray diffraction in a similar way. A stress analysis was proposed by differential calculus of the X-ray elastic constant in order to the avoidance of nonlinear problem. The stress analysis was applied to residual stress measurements of a titanium carbide coating film with preferred orientation and a cold-rolled steel with texture. The calculated values of the X-ray elastic constants showed the linearity on some condition for the film. The X-ray stress determination was carried out by the fitting the gradients of the measured lattice strain.


2020 ◽  
Vol 62 (3) ◽  
pp. 139-144
Author(s):  
A J Kossolapov ◽  
K S Chugunova

It has been shown that the metal on struck coin surfaces demonstrates residual elastic compression while the metal on cast coin surfaces demonstrates no stress at all or, sometimes, elastic tension. Non-destructive X-ray diffraction (XRD) (the so-called 'sin 2 Ψ method') is applied in this work for residual elastic stress analysis. It is quite an effective tool in the authentication of coins by establishing the production method of such objects (struck or cast).


Sign in / Sign up

Export Citation Format

Share Document