scholarly journals Кинетика нарастания ап-конверсионной люминесценции кристалла LiY-=SUB=-0.8-=/SUB=-Yb-=SUB=-0.2-=/SUB=-F-=SUB=-4-=/SUB=- : Tm-=SUP=-3+-=/SUP=- (0.2 at.%) при импульсном возбуждении

2019 ◽  
Vol 61 (5) ◽  
pp. 953
Author(s):  
А.В. Михеев ◽  
Б.Н. Казаков

AbstractThe regression analysis of the rise kinetics of up-conversion luminescence of the LiY_0.8Yb_0.2F_4:Tm^3+ (0.2 at %) crystal is performed. The kinetics curve is obtained with rectangular pulsed excitation by radiation from a laser diode (IR LD) with a wavelength of λ_ p = 933 nm. The most important—in these experimental conditions—mechanisms of the energy transfer from Yb^3+ ions to Tm^3+ ions are established, which are responsible for the transitions between the ground ^3 H _6 and excited ^3 F _4, ^3 H _4, ^1 G _4, ^1 D _2, and ^1 I _6 terms of the Tm^3+ ions. The durations of the relevant energy transfer processes are determined. It is shown that the energy transfer between rare earth ions in the LiY_0.8Yb_0.2F_4:Tm^3+ (0.2 at %) crystal occurs through the dipole–dipole interactions.

1985 ◽  
Vol 40 (5) ◽  
pp. 503-507 ◽  
Author(s):  
R. Braun ◽  
R. Otto ◽  
W. Wischert ◽  
S. Kemmler-Sack

By activation of the host lattices Sr3La2W2O12 and Ca2La0,5Na0,5WO6 with the trivalent rare earth ions Ln3+ = Pr, Sm, Eu, Tb, Dy, Ho, Er a cathodoluminescence in the visible region is obtained. The influence of the electronic structure and concentration of the activator on the relative emission efficiency as well as the host lattice participation in the energy transfer processes are discussed.


1993 ◽  
Vol 301 ◽  
Author(s):  
H.J. Lozykowski

ABSTRACTIn this work we have developed a model for the kinetics of the energy transfer from the host lattice to the localized core excited states of rare earth isoelectronic structured traps (REI-trap). We have derive a set of differential equations for semi-insulating semiconductor governing the kinetics of rare earth luminescence. The numerically simulated rise and decay times of luminescence show a good quantitative agreement with the experimental data obtained for InP:Yb, over a wide range of generation rates.


1986 ◽  
Vol 41 (10) ◽  
pp. 1228-1232 ◽  
Author(s):  
R. Otto ◽  
S. Kemmler-Sack

By activation of the host Gd3Te2Li3O12 with the trivalent rare earth ions Ln3+ = Pr, Sm, Eu, Tb-Tm and of Y3Te2Li3O12 with Ln3+ = Pr, Eu, Tb a cathodoluminescence in the visible region is obtained. The influence of the electronic structure and concentration of the activator on the relative emission efficiency as well as the host lattice participation in the energy transfer processes are discussed.


Author(s):  
Ping Wu ◽  
Qianli Ma ◽  
Wensheng Yu ◽  
Jinxian Wang ◽  
Gui-Xia Liu ◽  
...  

Here, we put forward a viewpoint that the energy transfer between different rare earth (RE) ions plays negative effect in RE ions doped white fluorescent materials if the native fluorescence...


Sign in / Sign up

Export Citation Format

Share Document