Kinetics of the Luminescence of Isoelectronic Rare-Earth Ions In III-V Semiconductors

1993 ◽  
Vol 301 ◽  
Author(s):  
H.J. Lozykowski

ABSTRACTIn this work we have developed a model for the kinetics of the energy transfer from the host lattice to the localized core excited states of rare earth isoelectronic structured traps (REI-trap). We have derive a set of differential equations for semi-insulating semiconductor governing the kinetics of rare earth luminescence. The numerically simulated rise and decay times of luminescence show a good quantitative agreement with the experimental data obtained for InP:Yb, over a wide range of generation rates.

1996 ◽  
Vol 422 ◽  
Author(s):  
U. K. Saha ◽  
H. J. Lozykowski

AbstractIn this work we have developed a model for the kinetics of the energy transfer from the host lattice to the core states of rare earth (RE) centers. We have derived a set of kinetics differential equations of RE luminescence in p-type semiconductor. Numerically computed rise and decay time of RE luminescence as a function of excitation power shows good agreement with the experimental data obtained for p-type GaAs:Nd.


2019 ◽  
Vol 61 (5) ◽  
pp. 953
Author(s):  
А.В. Михеев ◽  
Б.Н. Казаков

AbstractThe regression analysis of the rise kinetics of up-conversion luminescence of the LiY_0.8Yb_0.2F_4:Tm^3+ (0.2 at %) crystal is performed. The kinetics curve is obtained with rectangular pulsed excitation by radiation from a laser diode (IR LD) with a wavelength of λ_ p = 933 nm. The most important—in these experimental conditions—mechanisms of the energy transfer from Yb^3+ ions to Tm^3+ ions are established, which are responsible for the transitions between the ground ^3 H _6 and excited ^3 F _4, ^3 H _4, ^1 G _4, ^1 D _2, and ^1 I _6 terms of the Tm^3+ ions. The durations of the relevant energy transfer processes are determined. It is shown that the energy transfer between rare earth ions in the LiY_0.8Yb_0.2F_4:Tm^3+ (0.2 at %) crystal occurs through the dipole–dipole interactions.


1985 ◽  
Vol 40 (5) ◽  
pp. 503-507 ◽  
Author(s):  
R. Braun ◽  
R. Otto ◽  
W. Wischert ◽  
S. Kemmler-Sack

By activation of the host lattices Sr3La2W2O12 and Ca2La0,5Na0,5WO6 with the trivalent rare earth ions Ln3+ = Pr, Sm, Eu, Tb, Dy, Ho, Er a cathodoluminescence in the visible region is obtained. The influence of the electronic structure and concentration of the activator on the relative emission efficiency as well as the host lattice participation in the energy transfer processes are discussed.


1984 ◽  
Vol 39 (5) ◽  
pp. 490-494 ◽  
Author(s):  
B. Köngeter ◽  
S. Kemmler-Sack

By activation of the cubic garnet host lattice Gd3Te2Li3O12 with trivalent rare earth ions the most intense visible emission is observed for Ln3+ = Eu, Tb. Energy transfer from Gd3+ to Sm3+, Eu3+ or Dy3+, from Tb3+ to Eu3+ and from Er3+ to Tm3+ has been found to occur. The luminescence properties are strongly influenced by the substitution of Te6+ by W6+ (systems Gd3-xLnxTe2-yWyLi3O12)


1993 ◽  
Vol 301 ◽  
Author(s):  
H. J. Lozykowski ◽  
A. K. Alshawa ◽  
G. Pomrenke ◽  
I. Brown

ABSTRACTThe photoluminescence, time resolved spectra and kinetics of Yb implanted InP samples are studied under pulsed and CW excitations (above and below band-gap) at different temperatures and excitation intensity. The photoluminescence intensity and decay time as a function of temperature is explained by a proposed new quenching mechanism involving Fe ion. The rise and decay times depend on excitation intensity. The above experimental facts was explained using the kinetics model developed by H.J. Lozykowski [2]. The numerically simulated luminescence rise and decay times show a good quantitative agreement with experiment, over a wide range of generation rates. The electric field InP:Yb photoluminescence quenching was investigated and reported for the first time.


1984 ◽  
Vol 39 (11) ◽  
pp. 1115-1119
Author(s):  
R. Braun ◽  
S. Kemmler-Sack

By activation of the host lattice Sr3La2W2O12 with the trivalent rare earth ions Nd, Ho. Er. Tm and Yb an intense IR emission is observed, which can be sensitized by energy transfer from Nd3+ to Yb3+, from Er3+ to Ho3+ or Tm3+, from Tm3+ to Ho3+, and from Yb3+ to Ho3+ or Tm3+. For all other couples of trivalent rare earth ions no significant energy transfer is detected.


1986 ◽  
Vol 41 (10) ◽  
pp. 1228-1232 ◽  
Author(s):  
R. Otto ◽  
S. Kemmler-Sack

By activation of the host Gd3Te2Li3O12 with the trivalent rare earth ions Ln3+ = Pr, Sm, Eu, Tb-Tm and of Y3Te2Li3O12 with Ln3+ = Pr, Eu, Tb a cathodoluminescence in the visible region is obtained. The influence of the electronic structure and concentration of the activator on the relative emission efficiency as well as the host lattice participation in the energy transfer processes are discussed.


Author(s):  
Ping Wu ◽  
Qianli Ma ◽  
Wensheng Yu ◽  
Jinxian Wang ◽  
Gui-Xia Liu ◽  
...  

Here, we put forward a viewpoint that the energy transfer between different rare earth (RE) ions plays negative effect in RE ions doped white fluorescent materials if the native fluorescence...


Sign in / Sign up

Export Citation Format

Share Document