scholarly journals Акустические характеристики автоколебательного процесса, возникающего при взаимодействии сверхзвуковой недорасширенной струи с цилиндрической полостью

2020 ◽  
Vol 90 (5) ◽  
pp. 733
Author(s):  
К.Н. Волков ◽  
В.Н. Емельянов ◽  
А.В. Ефремов ◽  
А.И. Цветков

In high-pressure gas-jet emitters, the source of sound energy is kinetic energy of gas jet at supercritical pressure ratios between the working pressure and the atmospheric pressure. Under certain conditions, interaction of a supersonic jet with the resonator is accompanied by powerful self-excited oscillating process with the generation of acoustic waves into the environment and cavity resonator. A model of a self-excited oscillating process arising from the interaction of non-isobaric jet with semi-closed cylindrical cavities, allowing to distinguish typical elements of gas-dynamic structure of the forming flow, is considered. The physical pattern of the flow in the cavity of gas-jet emitter is discussed, and a study of the dependence of the characteristics of the self-excited oscillating process on the gas-dynamic and geometric parameters is performed.

2020 ◽  
Vol 5 (8) ◽  
Author(s):  
Vladimir Aniskin ◽  
Nikolay Maslov ◽  
Sergey Mironov ◽  
Elena Tsybulskaya ◽  
Ivan Tsyryulnikov

2015 ◽  
Vol 60 (4) ◽  
pp. 160-163
Author(s):  
V. M. Fomin ◽  
K. A. Lomanovich ◽  
B. V. Postnikov

2019 ◽  
Vol 89 (6) ◽  
pp. 830
Author(s):  
Н.Ю. Быков ◽  
А.И. Сафонов ◽  
Д.В. Лещев ◽  
С.В. Старинский ◽  
А.В. Булгаков

AbstractThe synthesis of thin silver films by the gas-jet deposition method is experimentally and theoretically studied. When the metal is deposited onto silicon substrates from a supersonic jet of silver vapor with a helium carrier gas, nanostructured films with a 3−30 nm size of nanostructures are obtained for a 1230−1380 K range of jet source temperatures. The data on Ag–He gas-jet dynamics when it is expanded into vacuum (velocity, temperature, concentration, flux of particles onto a substrate) depending on parameters at the source (vapor temperature, flow rate of a carrier gas) are obtained by the method of direct simulation Monte Carlo. The range of optimal helium flow rates, when the efficiency of a gas-jet source is maximal, is determined. It is established that the presence of a background gas in a deposition chamber at pressure higher than 1 Pa decreases the flow of particles onto a substrate, and a simple way of its evaluation is proposed. Conditions for formation of silver clusters in the jet are determined by using the simulation. It is shown that for experimental deposition regimes there are no clusters in the jet, and the observed silver nanostructures are formed on the substrate surface.


Akustika ◽  
2019 ◽  
Vol 32 ◽  
pp. 144-150
Author(s):  
Vladislav Emelyanov ◽  
Aleksey Tsvetkov ◽  
Konstantin Volkov

Interest in the development of models and methods focused on the mechanisms of noise generation in jet flows is due to strict noise requirements produced by various industrial devices, as well as the possibilities of using sound in engineering and technological processes. The tools of physical and computational modeling of gas dynamics and aero-acoustics problems are considered, and noise sources and mechanisms of noise generation in supersonic jet flows are discussed. The physical pattern of the flow in free supersonic under-expanded jets is discussed on the basis of experimental and numerical data, as well as the flow structure arising from the interaction of a supersonic under-expanded jet with a cylindrical cavity. The influence of the nozzle pressure ratio and cavity depth on the sound pressure level, amplitude and frequency characteristics of the flow parameters is studied.


Author(s):  
W. S. Cheung ◽  
G. J. M. Sims ◽  
R. W. Copplestone ◽  
J. R. Tilston ◽  
C. W. Wilson ◽  
...  

Lean premixed prevaporised (LPP) combustion can reduce NOx emissions from gas turbines, but often leads to combustion instability. A flame transfer function describes the change in the rate of heat release in response to perturbations in the inlet flow as a function of frequency. It is a quantitative assessment of the susceptibility of combustion to disturbances. The resulting fluctuations will in turn generate more acoustic waves and in some situations self-sustained oscillations can result. Flame transfer functions for LPP combustion are poorly understood at present but are crucial for predicting combustion oscillations. This paper describes an experiment designed to measure the flame transfer function of a simple combustor incorporating realistic components. Tests were conducted initially on this combustor at atmospheric pressure (1.2 bar and 550 K) to make an early demonstration of the combustion system. The test rig consisted of a plenum chamber with an inline siren, followed by a single LPP premixer/duct and a combustion chamber with a silencer to prevent natural instabilities. The siren was used to induce variable frequency pressure/acoustic signals into the air approaching the combustor. Both unsteady pressure and heat release measurements were undertaken. There was good coherence between the pressure and heat release signals. At each test frequency, two unsteady pressure measurements in the plenum were used to calculate the acoustic waves in this chamber and hence estimate the mass-flow perturbation at the fuel injection point inside the LPP duct. The flame transfer function relating the heat release perturbation to this mass flow was found as a function of frequency. The same combustor hardware and associated instrumentation were then used for the high pressure (15 bar and 800 K) tests. Flame transfer function measurements were taken at three combustion conditions that simulated the staging point conditions (Idle, Approach and Take-off) of a large turbofan gas turbine. There was good coherence between pressure and heat release signals at Idle, indicating a close relationship between acoustic and heat release processes. Problems were encountered at high frequencies for the Approach and Take-off conditions, but the flame transfer function for the Idle case had very good qualitative agreement with the atmospheric-pressure tests. The flame transfer functions calculated here could be used directly for predicting combustion oscillations in gas turbine using the same LPP duct at the same operating conditions. More importantly they can guide work to produce a general analytical model.


1975 ◽  
Vol 65 (3) ◽  
pp. 637-650
Author(s):  
E. J. Douze ◽  
G. G. Sorrells

abstract The performance of long-period seismographs is often seriously degraded by atmospheric pressure variation; the problem is particularly severe at periods greater than 20 sec. The pressure variations associated with wind-generated turbulence and acoustic waves are sufficient to deform the surface of the Earth, thus adding to the background noise level recorded by the seismometer. If microbarographs are operated together with the seismograph system, a large percentage of the atmospherically generated noise can be eliminated by the use of optimum filters. The filters are designed based on the least-mean-squares criterion, with the seismograph time trace as the desired output and the microbarographs as the inputs. Single-channel filters, using only one microbarograph, located at the seismometer vault are used to attenuate wind-generated noise. In order to attenuate the noise on windless days from other pressure sources, multichannel filtering is usually necessary and therefore an array of microbarographs is required. The filters used to predict the wind-generated noise are shown to be stable despite the complicated source. The performance of the multichannel varies widely depending on the structure of pressure variations predominating in the atmosphere.


2019 ◽  
Author(s):  
V. I. Zapryagaev ◽  
I. N. Kavun ◽  
N. P. Kiselev

Sign in / Sign up

Export Citation Format

Share Document