nozzle pressure
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 42)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yong Xiang ◽  
Xinming Zhao ◽  
Jianying Zhu ◽  
Qian Zhang ◽  
Jianwei Wang ◽  
...  

Aerospace ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 318
Author(s):  
Jaimon Dennis Quadros ◽  
Sher Afghan Khan ◽  
Abdul Aabid ◽  
Mohammad Shohag Alam ◽  
Muneer Baig

Base pressure becomes a decisive factor in governing the base drag of aerodynamic vehicles. While several experimental and numerical methods have already been used for base pressure analysis in suddenly expanded flows, their implementation is quite time-consuming. Therefore, we must develop a progressive approach to determine base pressure (β). Furthermore, a direct consideration of the influence of flow and geometric parameters cannot be studied by using these methods. This study develops a platform for data-driven analysis of base pressure (β) prediction in suddenly expanded flows, in which the influence of flow and geometric parameters including Mach number (M), nozzle pressure ratio (η), area ratio (α), and length to diameter ratio (φ) have been studied. Three different machine learning (ML) models, namely, artificial neural networks (ANN), support vector machine (SVM), and random forest (RF), have been trained using a large amount of data developed from response equations. The response equations for base pressure (β) were created using the response surface methodology (RSM) approach. The predicted results are compared with the experimental results to validate the proposed platform. The results obtained from this work can be applied in the right way to maximize base pressure in rockets and missiles to minimize base drag.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vignesh Kumar Murugesan ◽  
Aravindh Kumar Suseela Moorthi ◽  
Ganapathy Subramanian L. Ramachandran

Purpose The purpose of this study is to understand experimentally the mixing characteristics of a two-stream exhaust system with a supersonic Mach 1.5 primary jet that exits the rectangular C-D nozzle surrounded by a sonic secondary jet from a convergent rectangular nozzle by varying the aspect ratio (AR = 2 and 3) similar to those that can be available for future high-speed commercial aircraft. Design/methodology/approach This paper focuses on the experimental results of effects of AR at various expansion levels of jets issued/delivered from a central rectangular convergent-divergent nozzle of AR 2 and 3 surrounded by a coflow from a convergent rectangular sonic nozzle. The lip thickness of the primary nozzle is 2.2 mm. various nozzle pressure ratios (NPRs) ranging from 2, 3, 3.69 and 4 were chosen for pressure measurements. Findings For all the NPRs, AR 3 had a shorter core than AR 2. Also, AR 3 was found to decay faster in the transition and fully developed zones. The lateral plots show that the AR has an influence on the jet spread. Originality/value The structure of waves existing in the potential core of the rectangular coflow jet along with the major and minor axis planes was visualized by the shadowgraph technique.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jaimon Dennis Quadros ◽  
S. A. Khan ◽  
Hanumantharaya R.

Purpose The purpose of this study is to evaluate the effect of tabs having different corner geometries on the flow characteristics of a supersonic convergent–divergent (C-D) nozzle. Design/methodology/approach A circular C-D nozzle of Mach 2.0 was used, and the tabs were positioned at the exit of the nozzle in diametrically opposite directions. Three tabs having different corner geometry implemented in the experiments were rectangular tab with triangular top edge, triangular tab with a bell-shaped edge and tapered tab. The pressure profiles across the tabs and the centerline pressure decay along the jets were measured. The shadowgraph technique illustrated the waves present in the center of an oncoming jet. The nozzle pressure ratios (NPR) were varied from 4 to 8, in the steps of one, covering various overexpansion and under expansion levels at the exit of the nozzle. Findings The results showed tapered tabs act as a better mixing promoter than the other tabs used in the study. A reduction of 91.25% in core length for NPR 8 was observed for the tapered tabs. Subsequently, core length reductions generated by triangular tabs with a bell-shaped top edge were 87.5%, and those caused by rectangular tabs with a triangular top edge were 7.5%. Practical implications The research results could be used for designing combustion chambers and chemical reactors that require jets to enhance mixing levels. Originality/value The tabs having three different corners geometries, i.e. sharp or pointed, bell-shaped and straight edge has never been investigated before. The idea of only modifying corners is the innovative step of this research.


2021 ◽  
Author(s):  
Dakshina Murthy Inturi ◽  
Lovaraju Pinnam ◽  
Ramachandra Raju Vegesna

Abstract The present investigation aims to study the flow field characteristics of a single expansion nozzle (SEN). The flow field characteristics of conventional convergent-divergent (C-D) nozzle are also investigated for comparison. The experimental and computational studies were carried out for nozzle pressure ratios of 1.45, 1.55, 1.75, 2, 3, 4 and 5. The studies reveal that, for the single expansion nozzle the oblique shock moves towards the solid boundary with the increase of nozzle pressure ratio, which makes the flow to accelerate continuously in the majority of the divergent portion. The single expansion nozzle delivers the flow with higher Mach number than the C-D nozzle at the exit of the nozzle.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 555
Author(s):  
Jia-Chen Fan-Jiang ◽  
Chi-Wei Su ◽  
Guan-Yan Liou ◽  
Sheng-Jye Hwang ◽  
Huei-Huang Lee ◽  
...  

Injection molding is a popular process for the mass production of polymer products, but due to the characteristics of the injection process, there are many factors that will affect the product quality during the long fabrication processes. In this study, an adaptive adjustment system was developed by C++ programming to adjust the V/P switchover point and injection speed during the injection molding process in order to minimize the variation of the product weight. Based on a series of preliminary experiments, it was found that the viscosity index and peak pressure had a strong correlation with the weight of the injection-molded parts. Therefore, the viscosity index and peak pressure are used to guide the adjustment in the presented control system, and only one nozzle pressure sensor is used in the system. The results of the preliminary experiments indicate that the reduction of the packing time and setting enough clamping force can decrease the variation of the injected weight without turning on the adaptive control system; meanwhile, the master pressure curve obtained from the preliminary experiment was used as the control target of the system. With this system, the variation of the product weight and coefficient of variation (CV) of the product weight can be decreased to 0.21 and 0.05%, respectively.


2021 ◽  
pp. 004051752198909
Author(s):  
Zeguang Pei ◽  
Xingbao Wang ◽  
Zhimin Li ◽  
Lei Xiao ◽  
Tao Bai ◽  
...  

Vortex core-spun yarn containing a metal wire has a broad application prospect owing to the combination of its fasciated structure, durability, comfort, and its electrical properties. In this paper, three-dimensional numerical simulations on the flow characteristics inside the nozzle of a modified vortex spinning system for producing core-spun yarns are carried out to investigate the effect of some process and nozzle structural parameters—the nozzle pressure, distance between nozzle inlet and spindle, and protrusion length of the filament feeding tube—on the flow field. Using a machine vision system, experiments are also conducted to investigate the effects of these parameters on the wrapping defects of the vortex core-spun yarns which are then analyzed based on the simulation results. The number of wrapping defects on the yarn greatly decreases as the nozzle pressure increases from 4 × 105 Pa to 5 × 105 Pa. As the distance between nozzle inlet and spindle increases, the number of wrapping defects on the yarn first decreases and then increases. The effect of protrusion length of the filament feeding tube is found to be insignificant. This experimental and numerical study can provide a feasible way for optimizing the quality of the core-spun yarn produced on the modified vortex spinning system and analyzing the mechanism of the effects of parameters.


Sign in / Sign up

Export Citation Format

Share Document