scholarly journals MECHANISMS OF GENERATION AND SOURCES OF NOISE IN SUPERSONIC JETS

Akustika ◽  
2019 ◽  
Vol 32 ◽  
pp. 144-150
Author(s):  
Vladislav Emelyanov ◽  
Aleksey Tsvetkov ◽  
Konstantin Volkov

Interest in the development of models and methods focused on the mechanisms of noise generation in jet flows is due to strict noise requirements produced by various industrial devices, as well as the possibilities of using sound in engineering and technological processes. The tools of physical and computational modeling of gas dynamics and aero-acoustics problems are considered, and noise sources and mechanisms of noise generation in supersonic jet flows are discussed. The physical pattern of the flow in free supersonic under-expanded jets is discussed on the basis of experimental and numerical data, as well as the flow structure arising from the interaction of a supersonic under-expanded jet with a cylindrical cavity. The influence of the nozzle pressure ratio and cavity depth on the sound pressure level, amplitude and frequency characteristics of the flow parameters is studied.

Akustika ◽  
2019 ◽  
Vol 34 ◽  
pp. 136-140
Author(s):  
Pavel Chernyshov ◽  
Vladislav Emelyanov ◽  
Aleksey Tsvetkov ◽  
Konstantin Volkov

Development of models and methods of modelling and simulation of the mechanisms of noise generation in jet streams plays an important role in various engineering applications due to strict requirements for noise produced by different industrial devices as well as the possibilities of using sound in technological processes. The computational tools of numerical simulation of gas dynamics and aeroacoustics processes in supersonic jet flows are considered, and noise sources and noise generation mechanisms in supersonic jets are discussed. The approach to numerical simulation is based on large-eddy simulation technique allowing to resolve eddy structures in the flowfield and to predict noise generation more accurately compared to the existing tools. The results obtained show the structure of under- and over-expanded supersonic jets and could be used to calculate sources of noise in supersonic flows.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
G. Ezhilmaran ◽  
Suresh Chandra Khandai ◽  
Yogesh Kumar Sinha ◽  
S. Thanigaiarasu

Abstract This paper presents the numerical simulation of Mach 1.5 supersonic jet with perforated tabs. The jet with straight perforation tab was compared with jets having slanted perforated tabs of different diameters. The perforation angles were kept as 0° and 10° with respect to the axis of the nozzle. The blockage areas of the tabs were 4.9 %, 4.9 % and 2.4 % for straight perforation, 10° slanted perforation ( {{{\Phi }}_{\ }} = 1.3 mm) and 10° slanted perforation ( {{{\Phi }}_{\ }} = 1.65 mm) respectively. The 3-D numerical simulations were carried out using the software. The mixing enhancements caused by these tabs were studied in the presence of adverse and favourable pressure gradients, corresponding to nozzle pressure ratio (NPR) of 3, 3.7 and 5. For Mach number 1.5 jet, NPR 3 corresponds to 18.92 % adverse pressure gradients and NPR 5 corresponds to 35.13 % favourable pressure gradients. The centerline Mach number of the jet with slanted perforations is found to decay at a faster rate than uncontrolled nozzle and jet with straight perforation tab. Mach number plots were obtained at both near-field and far field downstream locations. There is 25 % and 65 % reduction in jet core length were observed for the 0° and 10° perforated tabs respectively in comparison to uncontrolled jet.


Author(s):  
Mrinal Kaushik ◽  
E. Rathakrishnan

AbstractThe efficacy of introducing mixing promoting small-scale vortices by two rectangular tabs, of aspect ratio 1.0, 1.5 and 2.0, placed at diametrically opposite locations at the exit of a Mach 1.73 convergent–divergent circular nozzle has been experimentally investigated, for NPRs from 4 to 8, covering overexpanded, correctly expanded and underexpanded states of the jet. The area blockage due to the each tab was 2.5% of the nozzle exit area. Keeping the blockage constant, the aspect ratio (defined as the ratio of length to width of the tab) was varied. A maximum core length reduction of 84.6% was caused by the tabs of aspect ratio 1.0, at underexpanded conditions corresponding to NPR (nozzle pressure ratio) 6. At this NPR, tabs of aspect ratio 1.5 and 2.0 caused core length reduction of 76.9% and 61.5%, respectively. The mixing promoting efficiency of aspect ratio 1.0 is found to be better than 1.5 and 2.0, at all NPRs of the present study, except NPR 5. The shadowgraph pictures of the uncontrolled and controlled jets clearly demonstrate the effectiveness of the tabs in weakening the waves in the jet core.


2014 ◽  
Vol 118 (1209) ◽  
pp. 1245-1278 ◽  
Author(s):  
Arun Kumar P. ◽  
E. Rathakrishnan

AbstractThe mixing promoting capability of right-angled triangular tab with sharp and truncated vertex has been investigated by placing two identical tabs at the exit of a Mach 2 axi-symmetric nozzle. The mixing promoting efficiency of these tabs have been quantified in the presence of adverse and marginally favourable pressure gradients at the nozzle exit. It was found that, at all levels of expansion of the present study though the core length reduction caused by both the tabs are appreciable, but the mixing caused by the truncated tab is superior. The mixing promoting efficiency of the truncated tab is found to increase with increase of nozzle pressure ratio (that is, decrease of adverse pressure gradient). For all the nozzle pressure ratios of the present study, the core length reduction caused by the truncated vertex tab is more than that of sharp vertex tab. As high as 84% reduction in core length is achieved with truncated vertex right-angled triangular tabs at moderately overexpanded level, corresponding to expansion levelpe/pa= 0·90. The corresponding core length reduction for right-angled triangular tabs with sharp vertex and rectangular tabs are 65% and 31%, respectively. The present results clearly show that the mixing promoting capability of the triangular tab is best than that of rectangular tabs at identical blockage and flow conditions.


Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 88
Author(s):  
Thillaikumar T. ◽  
Tamal Jana ◽  
Mrinal Kaushik

To improve the stealth capability of a military aircraft, the reduction in core length is essential to reduce the heat signature and the noise characteristics of the engine exhaust. The efficacy of rectangular vortex generators in achieving these objectives has been demonstrated by several researchers, owing to their simplicity. One way of producing the mixed-size vortices is by providing corrugations on the edge of the tab (actuator). Therefore, in the current study, two tabs of aspect ratio 1.5, mounted diametrically opposite to each other at the outlet of a Mach 1.73 circular nozzle, are examined at varying levels of expansions, ranging from overexpanded to underexpanded jet states. In addition, to generate the mixed-size vortices, three corrugation geometries, i.e., rectangular, triangular, and semicircular, are configured along the tab edges. Both quantitative and qualitative investigations are carried out by using the pitot probe to measure the stagnation pressures and by utilizing a shadowgraph technique to visualize the flow field. The corrugated tabs generated a significant mixing, and among them, the tabs with triangular corrugations are found to be most effective. A maximum reduction of about 99.7% in the supersonic core is obtained with triangular corrugated tabs at near-correct-expansion, corresponding to nozzle pressure ratio (NPR) 5. Interestingly, the semicircular corrugated tab significantly reduces the asymmetry near the nozzle exit plane. The shadowgraph images confirm the efficacy of different corrugated tabs in reducing the strength of the waves, prevalent in the supersonic core.


Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 72 ◽  
Author(s):  
Abhash Ranjan ◽  
Mrinal Kaushik ◽  
Dipankar Deb ◽  
Vlad Muresan ◽  
Mihaela Unguresan

This work explores the extent of jet mixing for a supersonic jet coming out of a Mach 1.8 convergent-divergent nozzle, controlled with two short rectangular vortex-generating actuators located diametrically opposite to each other with an emphasis on numerical methodology. The blockage ratio offered by the tabs is around 0.05. The numerical investigations were carried out by using a commercial computational fluid dynamics (CFD) package and all the simulations were performed by employing steady Reynolds-averaged Navier–Stokes equations and shear-stress transport k−ω turbulence model on a three-dimensional computational space for more accuracy. The numerical calculations are administered at nozzle pressure ratios (NPRs) of 4, 5, 6, 7 and 8, covering the overexpanded, the correctly expanded and the underexpanded conditions. The centerline pressure decay and the pressure profiles are plotted for both uncontrolled and the controlled jets. Numerical schlieren images are used to capture the barrel shock, the expansion fans and the Mach waves present in the flow field. Mach contours are also delineated at varying NPRs indicating the number of shock cells, their length and the variation of the shock cell structure and strength, to substantiate the prominent findings. The outcomes of this research are observed to be in sensible concurrence with the demonstrated exploratory findings. A reduction in the jet core length of 75% is attained with small vortex-generating actuators, compared to an uncontrolled jet, corresponding to nozzle pressure ratio 5. It was also seen that the controlled jet gets bifurcated downstream of the nozzle exit at a distance of about 5 D, where D is the nozzle exit diameter. Furthermore, it was fascinating to observe that the jet spread increases downstream of the nozzle exit for the controlled jet, as compared to the uncontrolled jet at any given NPR.


Author(s):  
К.Н. Волков ◽  
В.Н. Емельянов ◽  
А.И. Цветков ◽  
П.С. Чернышов

Интерес к разработке моделей и методов, направленных на изучение механизмов генерации шума в струйных течениях, объясняется постоянно ужесточающимися требованиями по шуму, производимому различными промышленными устройствами. Рассматриваются модели, лежащие в основе вычислительной газовой динамики и аэроакустики, а также интегральные методы расчета шума в дальнем поле и особенности численной реализации соответствующих математических моделей. Возможности разработанных средств численного моделирования демонстрируются на примере расчета шума, генерируемого сверхзвуковыми недорасширенными струями. Обсуждается влияние перепада давления на структуру струи, а также распределения газодинамических и акустических характеристик. Представленные средства численного моделирования задач вычислительной газовой динамики и вычислительной аэроакустики представляют собой инструменты решения исследовательских и инженерных задач, а также служат основой разработки новых методов и вычислительных алгоритмов. The interest in the development of models and methods focused on the study of mechanisms of noise generation in jets is explained by tightening requirements imposed on the noise produced by various industrial devices. The models of computational fluid dynamics and aeroacoustics, the integral methods of farfield noise calculation, and the numerical implementation of the corresponding mathematical models are considered. The capabilities of the developed numerical simulation tools are demonstrated by the solution of practical problems related to the noise generation by supersonic underexpanded jets. The effect of the nozzle pressure ratio on the jet structure and the distribution of gasdynamic and acoustic characteristics is discussed. The developed tools for the numerical solution of problems in the computational fluid dynamics and computational aeroacoustics can be considered as the tools for solving various research and engineering problems and as the basis for the development of new methods and numerical algorithms.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
G. Ezhilmaran ◽  
Suresh Chandra Khandai ◽  
S. Pavithrabalan ◽  
K. Udhayakumar

Abstract Control of Mach 1.8 circular jet with slanted perforated tabs is studied experimentally. Two sets of perforated tabs were used for this study. The perforation angles were 0° and 30° with respect to axis of the nozzle. The blockage areas of the tabs were 5 %. The mixing enhancements caused by these tabs were studied in the presence of adverse and favorable pressure gradients, corresponding to nozzle pressure ratio (NPR) of 4, 5.74 and 8. For Mach number 1.8, jet NPR 4 corresponds to 30 % adverse pressure gradients and NPR 8 corresponds to 39.37 % favorable pressure gradients. The pressure decay characteristics and shadowgraph images of perforated tabs at different NPR were compared. There is 45 % and 65 % reduction in jet core length were observed for the 0° and 30° perforated tabs respectively in both pitot and shadowgraph experiments in comparison to uncontrolled jet.


Akustika ◽  
2020 ◽  
Vol 36 (36) ◽  
pp. 22-24
Author(s):  
Anatoly Kochergin ◽  
Valeeva Ksenia

The paper considers an acoustic field created by a supersonic jet (CES) of a rocket engine freely flowing into flooded space. The acoustic field was presented in the form of a diagram of noise isobars, from which it can be seen that the acoustic field is formed by two effective noise sources: the nearest one, lying at a distance of 5-10 calibers from the nozzle cut and the far one, lying at a distance of 15-30 calibers from the nozzle cut.


Sign in / Sign up

Export Citation Format

Share Document