Measurement and Analysis of Flame Transfer Function in a Sector Combustor Under High Pressure Conditions

Author(s):  
W. S. Cheung ◽  
G. J. M. Sims ◽  
R. W. Copplestone ◽  
J. R. Tilston ◽  
C. W. Wilson ◽  
...  

Lean premixed prevaporised (LPP) combustion can reduce NOx emissions from gas turbines, but often leads to combustion instability. A flame transfer function describes the change in the rate of heat release in response to perturbations in the inlet flow as a function of frequency. It is a quantitative assessment of the susceptibility of combustion to disturbances. The resulting fluctuations will in turn generate more acoustic waves and in some situations self-sustained oscillations can result. Flame transfer functions for LPP combustion are poorly understood at present but are crucial for predicting combustion oscillations. This paper describes an experiment designed to measure the flame transfer function of a simple combustor incorporating realistic components. Tests were conducted initially on this combustor at atmospheric pressure (1.2 bar and 550 K) to make an early demonstration of the combustion system. The test rig consisted of a plenum chamber with an inline siren, followed by a single LPP premixer/duct and a combustion chamber with a silencer to prevent natural instabilities. The siren was used to induce variable frequency pressure/acoustic signals into the air approaching the combustor. Both unsteady pressure and heat release measurements were undertaken. There was good coherence between the pressure and heat release signals. At each test frequency, two unsteady pressure measurements in the plenum were used to calculate the acoustic waves in this chamber and hence estimate the mass-flow perturbation at the fuel injection point inside the LPP duct. The flame transfer function relating the heat release perturbation to this mass flow was found as a function of frequency. The same combustor hardware and associated instrumentation were then used for the high pressure (15 bar and 800 K) tests. Flame transfer function measurements were taken at three combustion conditions that simulated the staging point conditions (Idle, Approach and Take-off) of a large turbofan gas turbine. There was good coherence between pressure and heat release signals at Idle, indicating a close relationship between acoustic and heat release processes. Problems were encountered at high frequencies for the Approach and Take-off conditions, but the flame transfer function for the Idle case had very good qualitative agreement with the atmospheric-pressure tests. The flame transfer functions calculated here could be used directly for predicting combustion oscillations in gas turbine using the same LPP duct at the same operating conditions. More importantly they can guide work to produce a general analytical model.

2021 ◽  
Author(s):  
Austin Matthews ◽  
Anna Cobb ◽  
Subodh Adhikari ◽  
David Wu ◽  
Tim Lieuwen ◽  
...  

Abstract Understanding thermoacoustic instabilities is essential for the reliable operation of gas turbine engines. To complicate this understanding, the extreme sensitivity of gas turbine combustors can lead to instability characteristics that differ across a fleet. The capability to monitor flame transfer functions in fielded engines would provide valuable data to improve this understanding and aid in gas turbine operability from R&D to field tuning. This paper presents a new experimental facility used to analyze performance of full-scale gas turbine fuel injector hardware at elevated pressure and temperature. It features a liquid cooled, fiber-coupled probe that provides direct optical access to the heat release zone for high-speed chemiluminescence measurements. The probe was designed with fielded applications in mind. In addition, the combustion chamber includes an acoustic sensor array and a large objective window for verification of the probe using high-speed chemiluminescence imaging. This work experimentally demonstrates the new setup under scaled engine conditions, with a focus on operational zones that yield interesting acoustic tones. Results include a demonstration of the probe, preliminary analysis of acoustic and high speed chemiluminescence data, and high speed chemiluminescence imaging. The novelty of this paper is the deployment of a new test platform that incorporates full-scale engine hardware and provides the ability to directly compare acoustic and heat release response in a high-temperature, high-pressure environment to determine the flame transfer functions. This work is a stepping-stone towards the development of an on-line flame transfer function measurement technique for production engines in the field.


Author(s):  
Bruno Schuermans ◽  
Felix Guethe ◽  
Douglas Pennell ◽  
Daniel Guyot ◽  
Christian Oliver Paschereit

Thermoacoustic transfer functions of a full-scale gas turbine burner operating under full engine pressure have been measured. The excitation of the high-pressure test facility was done using a siren that modulated a part of the combustion airflow. Pulsation probes have been used to record the acoustic response of the system to this excitation. In addition, the flame’s luminescence response was measured by multiple photomultiplier probes and a light spectrometer. Three techniques to obtain the thermoacoustic transfer function are proposed and employed: two acoustic-optical techniques and a purely acoustic technique. The first acoustical-optical technique uses one single optical signal capturing the chemiluminescence intensity of the flame as a measure for the heat release in the flame. This technique only works if heat release fluctuations in the flame have only one generic source, e.g., equivalence ratio or mass flow fluctuations. The second acoustic-optical technique makes use of the different response of the flame’s luminescence at different optical wavelengths bands to acoustic excitation. It also works, if the heat release fluctuations have two contributions, e.g., equivalence ratio and mass flow fluctuation. For the purely acoustic technique, a new method was developed in order to obtain the flame transfer function, burner transfer function, and flame source term from only three pressure transducer signals. The purely acoustic method could be validated by the results obtained from the acoustic-optical techniques. The acoustic and acoustic-optical methods have been compared and a discussion on the benefits and limitations of each is given. The measured transfer functions have been implemented into a nonlinear, three-dimensional, time domain network model of a gas turbine with an annular combustion chamber. The predicted pulsation behavior shows a good agreement with pulsation measurements on a field gas turbine.


Author(s):  
Bruno Schuermans ◽  
Felix Guethe ◽  
Douglas Pennel ◽  
Daniel Guyot ◽  
Christian Oliver Paschereit

Thermoacoustic transfer functions have been measured of a full-scale gas turbine burner operating at full engine pressure. Excitation of the high-pressure test facility was done using a siren that modulated part of the combustion airflow. Pulsation probes have been used to record the acoustic response of the system to this excitation. In addition, the flame’s luminescence response was measured by multiple photomultiplier tubes and a light spectrometer. Three techniques to obtain the thermoacoustic transfer function are proposed and employed: two combined acoustical-optical technique and a purely acoustic technique. The first acoustical-optical technique uses one single optical signal capturing the chemiluminescence intensity of the flame as a measure for the heat release in the flame. It only works, if heat release fluctuations in the flame have only one contribution, e.g. equivalence ratio or mass flow fluctuations. The second acoustic-optical acoustic-optical technique makes use of the different response of the flame’s luminescence at different optical wavelengths bands to acoustic excitation. It also works, if the heat release fluctuations have two contributions, e.g. equivalence ratio and mass flow fluctuation. For the purely acoustic technique, a new method was developed in order to obtain the flame transfer function, burner transfer function and flame source term from only three pressure transducer signals. The purely acoustic method could be validated by the results obtained from the acoustic-optical techniques. The acoustic and acoustic-optical methods have been compared and a discussion on the benefits and limitations of the methods is given. The measured transfer functions have been implemented into a non-linear, three-dimensional, time domain network model of a gas turbine with an annular combustion chamber. The predicted pulsation behavior shows a good agreement with pulsation measurements on a field gas turbine.


Author(s):  
Krzysztof Kostrzewa ◽  
Berthold Noll ◽  
Manfred Aigner ◽  
Joachim Lepers ◽  
Werner Krebs ◽  
...  

The operation envelope of modern gas turbines is affected by thermoacoustically induced combustion oscillations. The understanding and development of active and passive means for their suppression is crucial for the design process and field introduction of new gas turbine combustion systems. Whereas the propagation of acoustic sound waves in gas turbine combustion systems has been well understood, the flame induced acoustic source terms are still a major topic of investigation. The dynamics of combustion processes can be analyzed by means of flame transfer functions which relate heat release fluctuations to velocity fluctuations caused by a flame. The purpose of this paper is to introduce and to validate a novel computational approach to reconstruct flame transfer functions based on unsteady excited RANS simulations and system identification. Resulting time series of velocity and heat release are then used to reconstruct the flame transfer function by application of a system identification method based on Wiener-Hopf formulation. CFD/SI approach has been applied to a typical gas turbine burner. 3D unsteady simulations have been performed and the flame transfer results have been validated by comparison to experimental data. In addition the method has been benchmarked to results obtained from sinusoidal excitations.


Author(s):  
Owen S. Graham ◽  
Ann P. Dowling

The adoption of lean premixed prevaporised combustion systems can reduce NOx emissions from gas turbines, but unfortunately also increases their susceptibility to thermoacoustic instabilities. Initially, acoustic waves can produce heat release fluctuations by a variety of mechanisms, often by perturbing the equivalence ratio. If correctly phased, heat release fluctuations can subsequently generate more acoustic waves, which at high amplitude can result in significant structural damage to the combustor. The prediction of this phenomenon is of great industrial interest. In previous work, we have coupled a physics based, kinematic model of the flame with a network model to provide the planar acoustic response necessary to close the feedback loop and predict the onset and amplitude of thermoacoustic instabilities in a lab-scale, axisymmetric single burner combustor. The advantage of a time domain approach is that the modal interaction, the influence of harmonics, and flame saturation can be investigated. This paper extends this approach to more realistic, annular geometries, where both planar and circumferential modes must be considered. In lean premixed prevaporised combustors, fluctuations in equivalence ratio have been shown to be a dominant cause of unsteady combustion. These can occur, for example, due to velocity perturbations in the premix ducts, which can lead to equivalence ratio fluctuations at the fuel injectors, which are subsequently convected downstream to the flame surfaces. Here, they can perturb the heat release by locally altering the flame speed, enthalpy of combustion, and, indirectly, the flame surface area. In many gas turbine designs, particularly aeroengines, the geometries are composed of a ring of premix ducts linking a plenum and an annular combustor. The most unstable modes are often circumferential modes. The network model is used to characterise the flow response of the geometry to heat fluctuations at an appropriate location, such as the fuel injectors. The heat release at each flame holder is determined in the time domain using the kinematic flame model derived, as a function of the flow perturbations in the premix duct. This approach is demonstrated for an annular ring of burners on a in a simple geometry. The approach is then extended to an industrial type gas turbine combustor, and used to predict the limit cycle amplitudes.


Author(s):  
Klaas Kunze ◽  
Christoph Hirsch ◽  
Thomas Sattelmayer

A generic swirl stabilized premix burner for natural gas is experimentally investigated in both a single burner test rig and in an annular combustion chamber. Flame transfer functions are measured relating the fluctuation of the flame heat release to the axial velocity fluctuation at the burner outlet. The OH-chemiluminescence signal of the flame, captured with a photomultiplier tube, is taken as an estimate for flame heat release, whereas the velocity fluctuation is measured with a hot wire probe. As integral measurements of the entire flame reveal important differences between the single burner and the annular combustor, locally resolved measurements are performed observing slices of the flame that are perpendicular to the main flow direction at a variable distance from the burner outlet. In both the single and the annular combustor a near field and a far field of the dynamic flame behavior can be distinguished. The annular combustor flame has a larger near field than the single combustor flame and a different shape in the presence of circumferential acoustic waves. Variation of swirl, thermal power and mass flow and comparison of the steady state heat release distribution within the flames lead to the result that the effective swirl in the annular combustor is lower than for the identical burner in the single burner combustor. When the difference in swirl is compensated for by modifying the burner configuration in the annular combustion chamber the flame transfer function is still not equal to the single combustor flame. The remaining difference can be attributed to the circumferential acoustic waves in the annular combustor which influence the flame shape.


Author(s):  
Bernhard C. Bobusch ◽  
Bernhard Ćosić ◽  
Jonas P. Moeck ◽  
Christian Oliver Paschereit

Equivalence ratio fluctuations are known to be one of the key factors controlling thermoacoustic stability in lean premixed gas turbine combustors. The mixing and thus the spatio-temporal evolution of these perturbations in the combustor flow is, however, difficult to account for in present low-order modeling approaches. To investigate this mechanism, experiments in an atmospheric combustion test rig are conducted. To assess the importance of equivalence ratio fluctuations in the present case, flame transfer functions for different injection positions are measured. By adding known perturbations in the fuel flow using a solenoid valve, the influence of equivalence ratio oscillations on the heat release rate is investigated. The spatially and temporally resolved equivalence ratio fluctuations in the reaction zone are measured using two optical chemiluminescence signals, captured with an intensified camera. A steady calibration measurement allows for the quantitative assessment of the equivalence ratio fluctuations in the flame. This information is used to obtain a mixing transfer function, which relates fluctuations in the fuel flow to corresponding fluctuations in the equivalence ratio of the flame. The current study focuses on the measurement of the global, spatially integrated, transfer function for equivalence ratio fluctuations and the corresponding modeling. In addition, the spatially resolved mixing transfer function is shown and discussed. The global mixing transfer function reveals that despite the good spatial mixing quality of the investigated generic burner, the ability to damp temporal fluctuations at low frequencies is rather poor. It is shown that the equivalence ratio fluctuations are the governing heat release rate oscillation response mechanism for this burner in the low-frequency regime. The global transfer function for equivalence ratio fluctuations derived from the measurements is characterized by a pronounced low-pass characteristic, which is in good agreement with the presented convection–diffusion mixing model.


Author(s):  
Oanh Nguyen ◽  
Scott Samuelsen

In view of increasingly stringent NOx emissions regulations on stationary gas turbines, lean combustion offers an attractive option to reduce reaction temperatures and thereby decrease NOx production. Under lean operation, however, the reaction is vulnerable to blowout. It is herein postulated that pilot hydrogen dopant injection, discretely located, can enhance the lean blowout performance without sacrificing overall performance. The present study addresses this hypothesis in a research combustor assembly, operated at atmospheric pressure, and fired on natural gas using rapid mixing injection, typical of commercial units. Five hydrogen injector scenarios are investigated. The results show that (1) pilot hydrogen dopant injection, discretely located, leads to improved lean blowout performance and (2) the location of discrete injection has a significant impact on the effectiveness of the doping strategy.


Author(s):  
J. D. MacLeod ◽  
W. Grabe

The Machinery and Engine Technology (MET) Program of the National Research Council of Canada (NRCC) has established a program for the evaluation of sensors to measure gas turbine engine performance accurately. The precise measurement of fuel flow is an essential part of steady-state gas turbine performance assessment. Prompted by an international engine testing and information exchange program, and a mandate to improve all aspects of gas turbine performance evaluation, the MET Laboratory has critically examined two types of fuel flowmeters, Coriolis and turbine. The two flowmeter types are different in that the Coriolis flowmeter measures mass flow directly, while the turbine flowmeter measures volumetric flow, which must be converted to mass flow for conventional performance analysis. The direct measurement of mass flow, using a Coriolis flowmeter, has many advantages in field testing of gas turbines, because it reduces the risk of errors resulting from the conversion process. Turbine flowmeters, on the other hand, have been regarded as an industry standard because they are compact, rugged, reliable, and relatively inexpensive. This paper describes the project objectives, the experimental installation, and the results of the comparison of the Coriolis and turbine type flowmeters in steady-state performance testing. Discussed are variations between the two types of flowmeters due to fuel characteristics, fuel handling equipment, acoustic and vibration interference and installation effects. Also included in this paper are estimations of measurement uncertainties for both types of flowmeters. Results indicate that the agreement between Coriolis and turbine type flowmeters is good over the entire steady-state operating range of a typical gas turbine engine. In some cases the repeatability of the Coriolis flowmeter is better than the manufacturers specification. Even a significant variation in fuel density (10%), and viscosity (300%), did not appear to compromise the ability of the Coriolis flowmeter to match the performance of the turbine flowmeter.


2021 ◽  
Author(s):  
Takashi Nishiumi ◽  
Hirofumi Ohara ◽  
Kotaro Miyauchi ◽  
Sosuke Nakamura ◽  
Toshishige Ai ◽  
...  

Abstract In recent years, MHPS achieved a NET M501J gas turbine combined cycle (GTCC) efficiency in excess of 62% operating at 1,600°C, while maintaining NOx under 25ppm. Taking advantage of our gas turbine combustion design, development and operational experience, retrofits of earlier generation gas turbines have been successfully applied and will be described in this paper. One example of the latest J-Series technologies, a conventional pilot nozzle was changed to a premix type pilot nozzle for low emission. The technology was retrofitted to the existing F-Series gas turbines, which resulted in emission rates of lower than 9ppm NOx(15%O2) while maintaining the same Turbine Inlet Temperature (TIT: Average Gas Temperature at the exit of the transition piece). After performing retrofitting design, high pressure rig tests, the field test prior to commercial operation was conducted on January 2019. This paper describes the Ultra-Low NOx combustor design features, retrofit design, high pressure rig test and verification test results of the upgraded M501F gas turbine. In addition, it describes another upgrade of turbine to improve efficiency and of combustion control system to achieve low emissions. Furthermore it describes the trouble-free upgrade of seven (7) units, which was completed by utilizing MHPS integration capabilities, including handling all the design, construction and service work of the main equipment, plant and control systems.


Sign in / Sign up

Export Citation Format

Share Document