scholarly journals Laser Induced Breakdown Spectroscopy (LIBS): Application to Geological Materials-=SUP=-*-=/SUP=-

2021 ◽  
Vol 129 (10) ◽  
pp. 1336
Author(s):  
Sonali Dubey ◽  
Rohit Kumar ◽  
Abhishek K. Rai ◽  
Awadhesh K. Rai

Laser-induced breakdown spectroscopy (LIBS) is emerging as an analytical tool for investigating geological materials. The unique abilities of this technique proven its potential in the area of geology. Detection of light elements, portability for in-field analysis, spot detection, and no sample preparation are some features that make this technique appropriate for the study of geological materials. The application of the LIBS technique has been tremendously developed in recent years. In this report, results obtained from previous and most recent studies regarding the investigation of geological materials LIBS technique are reviewed. Firstly, we introduce investigations that report the advancement in LIBS instrumentation, its applications, especially in the area of gemology and the extraterrestrial/planetary exploration have been reviewed. Investigation of gemstones by LIBS technique is not widely reviewed in the past as compared to LIBS application in planetary exploration or other geological applications. It is anticipated that for the classification of gemstones samples, huge data set is appropriate and to analyze this data set, multivariate/chemometric methods will be useful. Recent advancement of LIBS instrumentation for the study of meteorites, depth penetration in Martian rocks and its regolith proved the feasibility of LIBS used as robotic vehicles in the Martian environment. Keywords: LIBS, Gemstone, geological samples, Extra-terrestrial

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1241
Author(s):  
Nikolaos Gyftokostas ◽  
Eleni Nanou ◽  
Dimitrios Stefas ◽  
Vasileios Kokkinos ◽  
Christos Bouras ◽  
...  

In the present work, the emission and the absorption spectra of numerous Greek olive oil samples and mixtures of them, obtained by two spectroscopic techniques, namely Laser-Induced Breakdown Spectroscopy (LIBS) and Absorption Spectroscopy, and aided by machine learning algorithms, were employed for the discrimination/classification of olive oils regarding their geographical origin. Both emission and absorption spectra were initially preprocessed by means of Principal Component Analysis (PCA) and were subsequently used for the construction of predictive models, employing Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). All data analysis methodologies were validated by both “k-fold” cross-validation and external validation methods. In all cases, very high classification accuracies were found, up to 100%. The present results demonstrate the advantages of machine learning implementation for improving the capabilities of these spectroscopic techniques as tools for efficient olive oil quality monitoring and control.


2021 ◽  
Vol 19 (10) ◽  
pp. 01-07
Author(s):  
M.H. Asmaa ◽  
Sami A. Habana

Electron thickness and temperature of laser prompted Iron plasma boundaries, among different boundaries, were estimated. Plasma was delivered through the connection of high pinnacle power Nd: YAG laser at the key frequency of 1064 nm with a pellet target contains a limited quantity of lipstick from nearby business sectors. Lines from Fe II at 238.502 nm, Fe II at 254.904 nm, Fe II at 262.370 nm, Fe II at 286.545 nm and Fe I at 349.779 nm were utilized to assess the plasma boundaries. The current investigation was completed to assess electron temperature (Te), electron thickness (ne), plasma recurrence, Debye length and Debye number (ND). Laser-incited breakdown spectroscopy LIBS method was used for examining and deciding ghastly discharge lines. ID of change lines from all spectra was completed by contrasting ghostly lines and NIST nuclear data set.


2018 ◽  
Vol 33 (3) ◽  
pp. 461-467 ◽  
Author(s):  
W. T. Li ◽  
Y. N. Zhu ◽  
X. Li ◽  
Z. Q. Hao ◽  
L. B. Guo ◽  
...  

The ASPI-LDA algorithm combined with a compact spectrometer to achieve high accuracy classification, which has a great potential for field in situ remote detection.


2019 ◽  
Vol 12 (5) ◽  
pp. 1139-1146 ◽  
Author(s):  
李昂泽 LI Ang-ze ◽  
王宪双 WANG Xian-shuang ◽  
徐向君 XU Xiang-jun ◽  
何雅格 HE Ya-ge ◽  
郭 帅 GUO Shuai ◽  
...  

2020 ◽  
Vol 22 (7) ◽  
pp. 074012 ◽  
Author(s):  
Zhongqi FENG ◽  
Dacheng ZHANG ◽  
Bowen WANG ◽  
Jie DING ◽  
Xuyang LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document