scholarly journals Закономерности трения многоуровневых композиционных материалов, содержащих высокодисперсные частицы фуллереновой сажи

Author(s):  
И.А. Кобыхно ◽  
Ф.А. Юнусов ◽  
А.Д. Бреки ◽  
О.В. Толочко ◽  
А.Г. Кадомцев

The paper presents the results of tribological studies of carbon fiber reinforced polymer filled with fullerene soot nanoparticles. It is shown that the dry friction coefficient of the materials does not change when the fullerene soot concentration increases up to 4wt%, but an increase in the friction force occurs due to the forces of intermolecular attraction, the resultant of which monotonically increases.

2010 ◽  
Vol 163-167 ◽  
pp. 3701-3706 ◽  
Author(s):  
Tian Lai Yu ◽  
Li Yuan Zhang

Friction loss is an important component of the calculation of prestressing loss for external prestress strengthening technology. Unfortunately, the test data of relevant curvature friction and wobble coefficients is scarce, especially for beams strengthened by external prestressing Carbon Fiber-Reinforced Polymer (CFRP) tendons. Through the experiment of 12 concrete beams strengthened by external prestressing CFRP tendons, this study attempts to discuss the friction loss algorithm and the reasonable value of friction coefficient. The test results demonstrated that traditional friction loss algorithm for prestressed steel tendons is also suit to external prestressing CFRP tendons, but the value of curvature and wobble coefficients should be determined by different types of CFRP tendons and saddle design. What is more, aiming at the domestic production of CFRP tendons and the adopted special saddle design in this paper, the curvature friction coefficient is 0.263 and the wobble coefficient is 0.0067 at the deviator. Results of the research provide a reference for external prestress strengthening design with CFRP tendons.


2021 ◽  
Vol 1166 ◽  
pp. 13-24
Author(s):  
Jia Yun Cao ◽  
Xiao Min Zhang ◽  
Hong Bo Chen ◽  
Yu Jiang

Carbon Fiber Reinforced Polymer (CFRP) is an anisotropic material with outstanding tensile strength in the direction of axial but low compressive strength in the direction of radial, so the radial compressive failure and sliding failure are easy to occur in the practical application of compression and hanging wires. In this paper, the influence of different parameters on radial compressive failure and sliding failure is studied. The finite element method is used to simulate and analyze the CFRP and wedge clamp to find optimum condition parameters to make the CFRP neither sliding failure nor radial compressive failure. The parameters are as follows: interference between the CFRP and the inner wedge, friction coefficient between the CFRP and the inner wedge, angle of the wedge, inner wedge material elastic modulus. The results show that the most appropriate parameter is: the interference between 0.0236mm and 0.0252mm, the friction coefficient between 0.194 and 0.206, the wedge angle is greater than 1.75° and the elastic modulus of wedge material has little influence on the compressive failure and slippage failure of the CFRP.


2019 ◽  
Vol 7 (1) ◽  
pp. 30-34
Author(s):  
A. Ajwad ◽  
U. Ilyas ◽  
N. Khadim ◽  
Abdullah ◽  
M.U. Rashid ◽  
...  

Carbon fiber reinforced polymer (CFRP) strips are widely used all over the globe as a repair and strengthening material for concrete elements. This paper looks at comparison of numerous methods to rehabilitate concrete beams with the use of CFRP sheet strips. This research work consists of 4 under-reinforced, properly cured RCC beams under two point loading test. One beam was loaded till failure, which was considered the control beam for comparison. Other 3 beams were load till the appearance of initial crack, which normally occurred at third-quarters of failure load and then repaired with different ratios and design of CFRP sheet strips. Afterwards, the repaired beams were loaded again till failure and the results were compared with control beam. Deflections and ultimate load were noted for all concrete beams. It was found out the use of CFRP sheet strips did increase the maximum load bearing capacity of cracked beams, although their behavior was more brittle as compared with control beam.


Author(s):  
E. A. Nikolaeva ◽  
A. N. Timofeev ◽  
K. V. Mikhaylovskiy

This article describes the results of the development of a high thermal conductivity carbon fiber reinforced polymer based on carbon fiber from pitch and an ENPB matrix modified with a carbon powder of high thermal conductivity. Data of the technological scheme of production and the results of determining the physicomechanical and thermophysical characteristics of carbon fiber reinforced polymer are presented. 


Sign in / Sign up

Export Citation Format

Share Document