scholarly journals Determining some of the triggers for early life cycle failure in decay affected logistic queueing simulation

2010 ◽  
Vol 51 ◽  
pp. 715
Author(s):  
Gregory Sherman ◽  
Adrian Pincombe ◽  
Axel Bender
Author(s):  
Travis Moody ◽  
Robert Provine ◽  
Samantha Todd ◽  
Nicholas Tyler ◽  
Thomas R. Ryan ◽  
...  

2010 ◽  
Vol 41 (5) ◽  
pp. 531-536 ◽  
Author(s):  
A. A. Gheyas ◽  
R. D. Houston ◽  
J. C. Mota-Velasco ◽  
D. R. Guy ◽  
A. E. Tinch ◽  
...  

2017 ◽  
Vol 11 ◽  
pp. 1675-1683 ◽  
Author(s):  
Andrea Savoretti ◽  
Marco Mandolini ◽  
Roberto Raffaeli ◽  
Michele Germani

Author(s):  
Fabrizio Mazzonna ◽  
Franco Peracchi

Population aging, the combined effect of declining fertility and rising life expectancy, is one of the fundamental trends observed in developed counties and, increasingly, in developing countries as well. A key aspect of the aging process is the decline of cognitive ability. Cognitive aging is an important and complex phenomenon, and its risk factors and economic consequences are still not well understood. For instance, the relationship between cognitive aging and productivity matters for long-term economic growth. Cognitive functioning is also crucial for decision-making because it influences individuals’ ability to process information and to make the right choices, and older individuals are increasingly required to make complex financial, health, and long-term-care decisions that might affect their health, resources, and welfare. This article presents evidence from economics and other fields that have investigated this phenomenon from different perspectives. A common empirical finding is the hump-shaped profile of cognitive performance over the life cycle. Another is the large variability of observed age profiles, not only at the individual level but also across sociodemographic groups and countries. The age profiles of cognitive performance also vary depending on the cognitive task considered, reflecting the different combinations of cognitive skills that they require. The literature usually distinguishes between two main types of cognitive skills: fluid intelligence and crystallized intelligence. The first consists of the basic mechanisms of processing new information, while the second reflects acquired knowledge. Unlike fluid intelligence, which declines rapidly as people get older, crystallized intelligence tends to be maintained at older ages. Differences in the age profiles of cognitive performance across tasks partly reflect differences in the importance of these two types of intelligence. For instance, tasks where learning, problem-solving, and processing speed are essential tend to be associated with a faster decline, while tasks where experience matters more tend to be associated with a slower decline. Various life events and behaviors over the life cycle also contribute to the large heterogeneity in the observed age profiles of cognitive performance. This source of variation includes not only early-life events and investments (e.g., formal education), but also midlife and later-life events (e.g., health shocks) and individual choices (e.g., health behaviors or retirement). From an economic viewpoint, cognitive abilities may be regarded as one dimension of human capital, along with education, health, and noncognitive abilities. Economists have mainly focused their attention on human capital accumulation, and much less so on human capital deterioration. One explanation is that early-life investments appears to be more profitable than investments later in life. However, recent evidence from neuropsychology suggests that the human brain is malleable and open to enhancement even later in adulthood. Therefore, more economic research is needed to study how human capital depreciates over the life cycle and whether cognitive decline can be controlled.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Yuanxun Zheng ◽  
Kuan Li ◽  
Mengen Ji ◽  
Ehsan Moshtagh

In this paper, the whole life cycle (failure-reinforcement-failure) durability and related fatigue properties of prestressed hollow beam under carbonation erosion environment were studied. According to a 20 m hollow slab beam, the model of prestressed hollow beam was designed and made, and the durability and fatigue tests for the whole life cycle of prestressed hollow beam were carried out. The results showed that the compressive strength and elastic modulus of the specimens increased by about 20% under the action of carbonization erosion. With the increase of fatigue loading cycles, the crack occurrence and development speed of carbonized erosion components were greater than those of healthy components, and the fatigue life decreased sharply from 3 million cycles to 50,000 cycles. Pasting carbon fiber and steel plate had better reinforcement effect on the damaged prestressed plate beam and could help improving the fatigue life of the reinforced component. Comparing the reinforcement of different strengthening methods, it is found that the steel-plate-reinforced components have better mechanical properties and antifatigue attenuation characteristics than the carbon-fiber-reinforced ones. The research results have important theoretical value for improving the durability of structure and prolonging its service life.


Sign in / Sign up

Export Citation Format

Share Document