scholarly journals Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review

10.2196/12239 ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. e12239 ◽  
Author(s):  
Seyedmostafa Sheikhalishahi ◽  
Riccardo Miotto ◽  
Joel T Dudley ◽  
Alberto Lavelli ◽  
Fabio Rinaldi ◽  
...  
Heart ◽  
2021 ◽  
pp. heartjnl-2021-319769
Author(s):  
Meghan Reading Turchioe ◽  
Alexander Volodarskiy ◽  
Jyotishman Pathak ◽  
Drew N Wright ◽  
James Enlou Tcheng ◽  
...  

Natural language processing (NLP) is a set of automated methods to organise and evaluate the information contained in unstructured clinical notes, which are a rich source of real-world data from clinical care that may be used to improve outcomes and understanding of disease in cardiology. The purpose of this systematic review is to provide an understanding of NLP, review how it has been used to date within cardiology and illustrate the opportunities that this approach provides for both research and clinical care. We systematically searched six scholarly databases (ACM Digital Library, Arxiv, Embase, IEEE Explore, PubMed and Scopus) for studies published in 2015–2020 describing the development or application of NLP methods for clinical text focused on cardiac disease. Studies not published in English, lacking a description of NLP methods, non-cardiac focused and duplicates were excluded. Two independent reviewers extracted general study information, clinical details and NLP details and appraised quality using a checklist of quality indicators for NLP studies. We identified 37 studies developing and applying NLP in heart failure, imaging, coronary artery disease, electrophysiology, general cardiology and valvular heart disease. Most studies used NLP to identify patients with a specific diagnosis and extract disease severity using rule-based NLP methods. Some used NLP algorithms to predict clinical outcomes. A major limitation is the inability to aggregate findings across studies due to vastly different NLP methods, evaluation and reporting. This review reveals numerous opportunities for future NLP work in cardiology with more diverse patient samples, cardiac diseases, datasets, methods and applications.


2021 ◽  
Vol 28 (1) ◽  
pp. e100262
Author(s):  
Mustafa Khanbhai ◽  
Patrick Anyadi ◽  
Joshua Symons ◽  
Kelsey Flott ◽  
Ara Darzi ◽  
...  

ObjectivesUnstructured free-text patient feedback contains rich information, and analysing these data manually would require a lot of personnel resources which are not available in most healthcare organisations.To undertake a systematic review of the literature on the use of natural language processing (NLP) and machine learning (ML) to process and analyse free-text patient experience data.MethodsDatabases were systematically searched to identify articles published between January 2000 and December 2019 examining NLP to analyse free-text patient feedback. Due to the heterogeneous nature of the studies, a narrative synthesis was deemed most appropriate. Data related to the study purpose, corpus, methodology, performance metrics and indicators of quality were recorded.ResultsNineteen articles were included. The majority (80%) of studies applied language analysis techniques on patient feedback from social media sites (unsolicited) followed by structured surveys (solicited). Supervised learning was frequently used (n=9), followed by unsupervised (n=6) and semisupervised (n=3). Comments extracted from social media were analysed using an unsupervised approach, and free-text comments held within structured surveys were analysed using a supervised approach. Reported performance metrics included the precision, recall and F-measure, with support vector machine and Naïve Bayes being the best performing ML classifiers.ConclusionNLP and ML have emerged as an important tool for processing unstructured free text. Both supervised and unsupervised approaches have their role depending on the data source. With the advancement of data analysis tools, these techniques may be useful to healthcare organisations to generate insight from the volumes of unstructured free-text data.


2021 ◽  
Author(s):  
Ye Seul Bae ◽  
Kyung Hwan Kim ◽  
Han Kyul Kim ◽  
Sae Won Choi ◽  
Taehoon Ko ◽  
...  

BACKGROUND Smoking is a major risk factor and important variable for clinical research, but there are few studies regarding automatic obtainment of smoking classification from unstructured bilingual electronic health records (EHR). OBJECTIVE We aim to develop an algorithm to classify smoking status based on unstructured EHRs using natural language processing (NLP). METHODS With acronym replacement and Python package Soynlp, we normalize 4,711 bilingual clinical notes. Each EHR notes was classified into 4 categories: current smokers, past smokers, never smokers, and unknown. Subsequently, SPPMI (Shifted Positive Point Mutual Information) is used to vectorize words in the notes. By calculating cosine similarity between these word vectors, keywords denoting the same smoking status are identified. RESULTS Compared to other keyword extraction methods (word co-occurrence-, PMI-, and NPMI-based methods), our proposed approach improves keyword extraction precision by as much as 20.0%. These extracted keywords are used in classifying 4 smoking statuses from our bilingual clinical notes. Given an identical SVM classifier, the extracted keywords improve the F1 score by as much as 1.8% compared to those of the unigram and bigram Bag of Words. CONCLUSIONS Our study shows the potential of SPPMI in classifying smoking status from bilingual, unstructured EHRs. Our current findings show how smoking information can be easily acquired and used for clinical practice and research.


2021 ◽  
Author(s):  
Sena Chae ◽  
Jiyoun Song ◽  
Marietta Ojo ◽  
Maxim Topaz

The goal of this natural language processing (NLP) study was to identify patients in home healthcare with heart failure symptoms and poor self-management (SM). The preliminary lists of symptoms and poor SM status were identified, NLP algorithms were used to refine the lists, and NLP performance was evaluated using 2.3 million home healthcare clinical notes. The overall precision to identify patients with heart failure symptoms and poor SM status was 0.86. The feasibility of methods was demonstrated to identify patients with heart failure symptoms and poor SM documented in home healthcare notes. This study facilitates utilizing key symptom information and patients’ SM status from unstructured data in electronic health records. The results of this study can be applied to better individualize symptom management to support heart failure patients’ quality-of-life.


2020 ◽  
Vol 10 (8) ◽  
pp. 2824
Author(s):  
Yu-Hsiang Su ◽  
Ching-Ping Chao ◽  
Ling-Chien Hung ◽  
Sheng-Feng Sung ◽  
Pei-Ju Lee

Electronic medical records (EMRs) have been used extensively in most medical institutions for more than a decade in Taiwan. However, information overload associated with rapid accumulation of large amounts of clinical narratives has threatened the effective use of EMRs. This situation is further worsened by the use of “copying and pasting”, leading to lots of redundant information in clinical notes. This study aimed to apply natural language processing techniques to address this problem. New information in longitudinal clinical notes was identified based on a bigram language model. The accuracy of automated identification of new information was evaluated using expert annotations as the reference standard. A two-stage cross-over user experiment was conducted to evaluate the impact of highlighting of new information on task demands, task performance, and perceived workload. The automated method identified new information with an F1 score of 0.833. The user experiment found a significant decrease in perceived workload associated with a significantly higher task performance. In conclusion, automated identification of new information in clinical notes is feasible and practical. Highlighting of new information enables healthcare professionals to grasp key information from clinical notes with less perceived workload.


2018 ◽  
Vol 77 (2) ◽  
pp. 160-166 ◽  
Author(s):  
Daniel J. Feller ◽  
Jason Zucker ◽  
Michael T. Yin ◽  
Peter Gordon ◽  
Noémie Elhadad

Sign in / Sign up

Export Citation Format

Share Document