scholarly journals Personalized Monitoring Model for Electrocardiogram Signals: Diagnostic Accuracy Study

10.2196/24388 ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. e24388
Author(s):  
Rado Kotorov ◽  
Lianhua Chi ◽  
Min Shen

Background Due to the COVID-19 pandemic, the demand for remote electrocardiogram (ECG) monitoring has increased drastically in an attempt to prevent the spread of the virus and keep vulnerable individuals with less severe cases out of hospitals. Enabling clinicians to set up remote patient ECG monitoring easily and determining how to classify the ECG signals accurately so relevant alerts are sent in a timely fashion is an urgent problem to be addressed for remote patient monitoring (RPM) to be adopted widely. Hence, a new technique is required to enable routine and widespread use of RPM, as is needed due to COVID-19. Objective The primary aim of this research is to create a robust and easy-to-use solution for personalized ECG monitoring in real-world settings that is precise, easily configurable, and understandable by clinicians. Methods In this paper, we propose a Personalized Monitoring Model (PMM) for ECG data based on motif discovery. Motif discovery finds meaningful or frequently recurring patterns in patient ECG readings. The main strategy is to use motif discovery to extract a small sample of personalized motifs for each individual patient and then use these motifs to predict abnormalities in real-time readings of that patient using an artificial logical network configured by a physician. Results Our approach was tested on 30 minutes of ECG readings from 32 patients. The average diagnostic accuracy of the PMM was always above 90% and reached 100% for some parameters, compared to 80% accuracy for the Generalized Monitoring Models (GMM). Regardless of parameter settings, PMM training models were generated within 3-4 minutes, compared to 1 hour (or longer, with increasing amounts of training data) for the GMM. Conclusions Our proposed PMM almost eliminates many of the training and small sample issues associated with GMMs. It also addresses accuracy and computational cost issues of the GMM, caused by the uniqueness of heartbeats and training issues. In addition, it addresses the fact that doctors and nurses typically do not have data science training and the skills needed to configure, understand, and even trust existing black box machine learning models.

2020 ◽  
Author(s):  
Rado Kotorov ◽  
Lianhua Chi ◽  
Min Shen

BACKGROUND Due to the COVID-19 pandemic, the demand for remote electrocardiogram (ECG) monitoring has increased drastically in an attempt to prevent the spread of the virus and keep vulnerable individuals with less severe cases out of hospitals. Enabling clinicians to set up remote patient ECG monitoring easily and determining how to classify the ECG signals accurately so relevant alerts are sent in a timely fashion is an urgent problem to be addressed for remote patient monitoring (RPM) to be adopted widely. Hence, a new technique is required to enable routine and widespread use of RPM, as is needed due to COVID-19. OBJECTIVE The primary aim of this research is to create a robust and easy-to-use solution for personalized ECG monitoring in real-world settings that is precise, easily configurable, and understandable by clinicians. METHODS In this paper, we propose a Personalized Monitoring Model (PMM) for ECG data based on motif discovery. Motif discovery finds meaningful or frequently recurring patterns in patient ECG readings. The main strategy is to use motif discovery to extract a small sample of personalized motifs for each individual patient and then use these motifs to predict abnormalities in real-time readings of that patient using an artificial logical network configured by a physician. RESULTS Our approach was tested on 30 minutes of ECG readings from 32 patients. The average diagnostic accuracy of the PMM was always above 90% and reached 100% for some parameters, compared to 80% accuracy for the Generalized Monitoring Models (GMM). Regardless of parameter settings, PMM training models were generated within 3-4 minutes, compared to 1 hour (or longer, with increasing amounts of training data) for the GMM. CONCLUSIONS Our proposed PMM almost eliminates many of the training and small sample issues associated with GMMs. It also addresses accuracy and computational cost issues of the GMM, caused by the uniqueness of heartbeats and training issues. In addition, it addresses the fact that doctors and nurses typically do not have data science training and the skills needed to configure, understand, and even trust existing black box machine learning models.


2020 ◽  
Author(s):  
Rado Kotorov ◽  
Lianhua Chi ◽  
Min Shen

BACKGROUND Lately, the demand for remote ECG monitoring has increased drastically because of the COVID-19 pandemic. To prevent the spread of the virus and keep individuals with less severe cases out of hospitals, more patients are having heart disease diagnosis and monitoring remotely at home. The efficiency and accuracy of the ECG signal classifier are becoming more important because false alarms can overwhelm the system. Therefore, how to classify the ECG signals accurately and send alerts to healthcare professionals in timely fashion is an urgent problem to be addressed. OBJECTIVE The primary aim of this research is to create a robust and easy-to-configure solution for monitoring ECG signal in real-world settings. We developed a technique for building personalized prediction models to address the issues of generalized models because of the uniqueness of heartbeats [19]. In most cases, doctors and nurses do not have data science background and the existing Machine Learning models might be hard to configure. Hence a new technique is required if Remote Patient Monitoring will take off on a grand scale as is needed due to COVID-19. The main goal is to develop a technique that allows doctors, nurses, and other medical practitioners to easily configure a personalized model for remote patient monitoring. The proposed model can be easily understood and configured by medical practitioners since it requires less training data and fewer parameters to configure. METHODS In this paper, we propose a Personalized Monitoring Model (PMM) for ECG signal based on time series motif discovery to address this challenge. The main strategy here is to individually extract personalized motifs for each individual patient and then use motifs to predict the rest of readings of that patient by an artificial logical network. RESULTS In 32 study patients, each patient contains 30 mins of ECG signals/readings. Using our proposed Personalized Monitoring Model (PMM), the best diagnostic accuracy reached 100%. Overall, the average accuracy of PMM was always maintained above 90% with different parameter settings. For Generalized Monitoring Models (GMM1 and GMM2), the average accuracies were only around 80% with much more running time than PMM. Regardless of parameter settings, it normally took 3-4 mins for PMM to generate the training model. However, for GMM1 and GMM2, it took around 1 hour and even more with the increase of training data. The proposed model substantially speeds up the ECG diagnostics and effectively improve the accuracy of ECG diagnostics. CONCLUSIONS Our proposed PMM almost eliminates much training and small sample issues and is completely understandable and configurable by a doctor or a nurse.


2018 ◽  
Author(s):  
Roman Zubatyuk ◽  
Justin S. Smith ◽  
Jerzy Leszczynski ◽  
Olexandr Isayev

<p>Atomic and molecular properties could be evaluated from the fundamental Schrodinger’s equation and therefore represent different modalities of the same quantum phenomena. Here we present AIMNet, a modular and chemically inspired deep neural network potential. We used AIMNet with multitarget training to learn multiple modalities of the state of the atom in a molecular system. The resulting model shows on several benchmark datasets the state-of-the-art accuracy, comparable to the results of orders of magnitude more expensive DFT methods. It can simultaneously predict several atomic and molecular properties without an increase in computational cost. With AIMNet we show a new dimension of transferability: the ability to learn new targets utilizing multimodal information from previous training. The model can learn implicit solvation energy (like SMD) utilizing only a fraction of original training data, and archive MAD error of 1.1 kcal/mol compared to experimental solvation free energies in MNSol database.</p>


Author(s):  
Ritu Khandelwal ◽  
Hemlata Goyal ◽  
Rajveer Singh Shekhawat

Introduction: Machine learning is an intelligent technology that works as a bridge between businesses and data science. With the involvement of data science, the business goal focuses on findings to get valuable insights on available data. The large part of Indian Cinema is Bollywood which is a multi-million dollar industry. This paper attempts to predict whether the upcoming Bollywood Movie would be Blockbuster, Superhit, Hit, Average or Flop. For this Machine Learning techniques (classification and prediction) will be applied. To make classifier or prediction model first step is the learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations. Methods: All the techniques related to classification and Prediction such as Support Vector Machine(SVM), Random Forest, Decision Tree, Naïve Bayes, Logistic Regression, Adaboost, and KNN will be applied and try to find out efficient and effective results. All these functionalities can be applied with GUI Based workflows available with various categories such as data, Visualize, Model, and Evaluate. Result: To make classifier or prediction model first step is learning stage in which we need to give the training data set to train the model by applying some technique or algorithm and after that different rules are generated which helps to make a model and predict future trends in different types of organizations Conclusion: This paper focuses on Comparative Analysis that would be performed based on different parameters such as Accuracy, Confusion Matrix to identify the best possible model for predicting the movie Success. By using Advertisement Propaganda, they can plan for the best time to release the movie according to the predicted success rate to gain higher benefits. Discussion: Data Mining is the process of discovering different patterns from large data sets and from that various relationships are also discovered to solve various problems that come in business and helps to predict the forthcoming trends. This Prediction can help Production Houses for Advertisement Propaganda and also they can plan their costs and by assuring these factors they can make the movie more profitable.


Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 87
Author(s):  
Yongqiang Wang ◽  
Ye Liu ◽  
Xiaoyi Ma

The numerical simulation of the optimal design of gravity dams is computationally expensive. Therefore, a new optimization procedure is presented in this study to reduce the computational cost for determining the optimal shape of a gravity dam. Optimization was performed using a combination of the genetic algorithm (GA) and an updated Kriging surrogate model (UKSM). First, a Kriging surrogate model (KSM) was constructed with a small sample set. Second, the minimizing the predictor strategy was used to add samples in the region of interest to update the KSM in each updating cycle until the optimization process converged. Third, an existing gravity dam was used to demonstrate the effectiveness of the GA–UKSM. The solution obtained with the GA–UKSM was compared with that obtained using the GA–KSM. The results revealed that the GA–UKSM required only 7.53% of the total number of numerical simulations required by the GA–KSM to achieve similar optimization results. Thus, the GA–UKSM can significantly improve the computational efficiency. The method adopted in this study can be used as a reference for the optimization of the design of gravity dams.


2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Lei Luo ◽  
Chao Zhang ◽  
Yongrui Qin ◽  
Chunyuan Zhang

With the explosive growth of the data volume in modern applications such as web search and multimedia retrieval, hashing is becoming increasingly important for efficient nearest neighbor (similar item) search. Recently, a number of data-dependent methods have been developed, reflecting the great potential of learning for hashing. Inspired by the classic nonlinear dimensionality reduction algorithm—maximum variance unfolding, we propose a novel unsupervised hashing method, named maximum variance hashing, in this work. The idea is to maximize the total variance of the hash codes while preserving the local structure of the training data. To solve the derived optimization problem, we propose a column generation algorithm, which directly learns the binary-valued hash functions. We then extend it using anchor graphs to reduce the computational cost. Experiments on large-scale image datasets demonstrate that the proposed method outperforms state-of-the-art hashing methods in many cases.


2021 ◽  
Author(s):  
Mark Zhao ◽  
Ryosuke Okuno

Abstract Equation-of-state (EOS) compositional simulation is commonly used to model the interplay between phase behavior and fluid flow for various reservoir and surface processes. Because of its computational cost, however, there is a critical need for efficient phase-behavior calculations using an EOS. The objective of this research was to develop a proxy model for fugacity coefficient based on the Peng-Robinson EOS for rapid multiphase flash in compositional flow simulation. The proxy model as implemented in this research is to bypass the calculations of fugacity coefficients when the Peng-Robinson EOS has only one root, which is often the case at reservoir conditions. The proxy fugacity model was trained by artificial neural networks (ANN) with over 30 million fugacity coefficients based on the Peng-Robinson EOS. It accurately predicts the Peng- Robinson fugacity coefficient by using four parameters: Am, Bm, Bi, and ΣxiAij. Since these scalar parameters are general, not specific to particular compositions, pressures, and temperatures, the proxy model is applicable to petroleum engineering applications as equally as the original Peng-Robinson EOS. The proxy model is applied to multiphase flash calculations (phase-split and stability), where the cubic equation solutions and fugacity coefficient calculations are bypassed when the Peng-Robinson EOS has one root. The original fugacity coefficient is analytically calculated when the EOS has more than one root, but this occurs only occasionally at reservoir conditions. A case study shows the proxy fugacity model gave a speed-up factor of 3.4% in comparison to the conventional EOS calculation. Case studies also demonstrate accurate multiphase flash results (stability and phase split) and interchangeable proxy models for different fluid cases with different (numbers of) components. This is possible because it predicts the Peng-Robinson fugacity in the variable space that is not specific to composition, temperature, and pressure. For the same reason, non-zero binary iteration parameters do not impair the applicability, accuracy, robustness, and efficiency of the model. As the proxy models are specific to individual components, a combination of proxy models can be used to model for any mixture of components. Tuning of training hyperparameters and training data sampling method helped reduce the mean absolute percent error to less than 0.1% in the ANN modeling. To the best of our knowledge, this is the first generalized proxy model of the Peng-Robinson fugacity that is applicable to any mixture. The proposed model retains the conventional flash iteration, the convergence robustness, and the option of manual parameter tuning for fluid characterization.


2010 ◽  
Vol 9 ◽  
pp. CIN.S4020 ◽  
Author(s):  
Chen Zhao ◽  
Michael L. Bittner ◽  
Robert S. Chapkin ◽  
Edward R. Dougherty

When confronted with a small sample, feature-selection algorithms often fail to find good feature sets, a problem exacerbated for high-dimensional data and large feature sets. The problem is compounded by the fact that, if one obtains a feature set with a low error estimate, the estimate is unreliable because training-data-based error estimators typically perform poorly on small samples, exhibiting optimistic bias or high variance. One way around the problem is limit the number of features being considered, restrict features sets to sizes such that all feature sets can be examined by exhaustive search, and report a list of the best performing feature sets. If the list is short, then it greatly restricts the possible feature sets to be considered as candidates; however, one can expect the lowest error estimates obtained to be optimistically biased so that there may not be a close-to-optimal feature set on the list. This paper provides a power analysis of this methodology; in particular, it examines the kind of results one should expect to obtain relative to the length of the list and the number of discriminating features among those considered. Two measures are employed. The first is the probability that there is at least one feature set on the list whose true classification error is within some given tolerance of the best feature set and the second is the expected number of feature sets on the list whose true errors are within the given tolerance of the best feature set. These values are plotted as functions of the list length to generate power curves. The results show that, if the number of discriminating features is not too small—that is, the prior biological knowledge is not too poor—then one should expect, with high probability, to find good feature sets. Availability: companion website at http://gsp.tamu.edu/Publications/supplementary/zhao09a/


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Aolin Che ◽  
Yalin Liu ◽  
Hong Xiao ◽  
Hao Wang ◽  
Ke Zhang ◽  
...  

In the past decades, due to the low design cost and easy maintenance, text-based CAPTCHAs have been extensively used in constructing security mechanisms for user authentications. With the recent advances in machine/deep learning in recognizing CAPTCHA images, growing attack methods are presented to break text-based CAPTCHAs. These machine learning/deep learning-based attacks often rely on training models on massive volumes of training data. The poorly constructed CAPTCHA data also leads to low accuracy of attacks. To investigate this issue, we propose a simple, generic, and effective preprocessing approach to filter and enhance the original CAPTCHA data set so as to improve the accuracy of the previous attack methods. In particular, the proposed preprocessing approach consists of a data selector and a data augmentor. The data selector can automatically filter out a training data set with training significance. Meanwhile, the data augmentor uses four different image noises to generate different CAPTCHA images. The well-constructed CAPTCHA data set can better train deep learning models to further improve the accuracy rate. Extensive experiments demonstrate that the accuracy rates of five commonly used attack methods after combining our preprocessing approach are 2.62% to 8.31% higher than those without preprocessing approach. Moreover, we also discuss potential research directions for future work.


Author(s):  
WEIXIANG LIU ◽  
KEHONG YUAN ◽  
JIAN WU ◽  
DATIAN YE ◽  
ZHEN JI ◽  
...  

Classification of gene expression samples is a core task in microarray data analysis. How to reduce thousands of genes and to select a suitable classifier are two key issues for gene expression data classification. This paper introduces a framework on combining both feature extraction and classifier simultaneously. Considering the non-negativity, high dimensionality and small sample size, we apply a discriminative mixture model which is designed for non-negative gene express data classification via non-negative matrix factorization (NMF) for dimension reduction. In order to enhance the sparseness of training data for fast learning of the mixture model, a generalized NMF is also adopted. Experimental results on several real gene expression datasets show that the classification accuracy, stability and decision quality can be significantly improved by using the generalized method, and the proposed method can give better performance than some previous reported results on the same datasets.


Sign in / Sign up

Export Citation Format

Share Document