scholarly journals Virtual Reality for Health Professions Education: Systematic Review and Meta-Analysis by the Digital Health Education Collaboration (Preprint)

2018 ◽  
Author(s):  
Bhone Myint Kyaw ◽  
Nakul Saxena ◽  
Pawel Posadzki ◽  
Jitka Vseteckova ◽  
Charoula Konstantia Nikolaou ◽  
...  

BACKGROUND Virtual reality (VR) is a technology that allows the user to explore and manipulate computer-generated real or artificial three-dimensional multimedia sensory environments in real time to gain practical knowledge that can be used in clinical practice. OBJECTIVE The aim of this systematic review was to evaluate the effectiveness of VR for educating health professionals and improving their knowledge, cognitive skills, attitudes, and satisfaction. METHODS We performed a systematic review of the effectiveness of VR in pre- and postregistration health professions education following the gold standard Cochrane methodology. We searched 7 databases from the year 1990 to August 2017. No language restrictions were applied. We included randomized controlled trials and cluster-randomized trials. We independently selected studies, extracted data, and assessed risk of bias, and then, we compared the information in pairs. We contacted authors of the studies for additional information if necessary. All pooled analyses were based on random-effects models. We used the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach to rate the quality of the body of evidence. RESULTS A total of 31 studies (2407 participants) were included. Meta-analysis of 8 studies found that VR slightly improves postintervention knowledge scores when compared with traditional learning (standardized mean difference [SMD]=0.44; 95% CI 0.18-0.69; I2=49%; 603 participants; moderate certainty evidence) or other types of digital education such as online or offline digital education (SMD=0.43; 95% CI 0.07-0.79; I2=78%; 608 participants [8 studies]; low certainty evidence). Another meta-analysis of 4 studies found that VR improves health professionals’ cognitive skills when compared with traditional learning (SMD=1.12; 95% CI 0.81-1.43; I2=0%; 235 participants; large effect size; moderate certainty evidence). Two studies compared the effect of VR with other forms of digital education on skills, favoring the VR group (SMD=0.5; 95% CI 0.32-0.69; I2=0%; 467 participants; moderate effect size; low certainty evidence). The findings for attitudes and satisfaction were mixed and inconclusive. None of the studies reported any patient-related outcomes, behavior change, as well as unintended or adverse effects of VR. Overall, the certainty of evidence according to the GRADE criteria ranged from low to moderate. We downgraded our certainty of evidence primarily because of the risk of bias and/or inconsistency. CONCLUSIONS We found evidence suggesting that VR improves postintervention knowledge and skills outcomes of health professionals when compared with traditional education or other types of digital education such as online or offline digital education. The findings on other outcomes are limited. Future research should evaluate the effectiveness of immersive and interactive forms of VR and evaluate other outcomes such as attitude, satisfaction, cost-effectiveness, and clinical practice or behavior change.

Author(s):  
Lorainne Tudor Car ◽  
Bhone Myint Kyaw ◽  
Gerard Dunleavy ◽  
Neil A Smart ◽  
Monika Semwal ◽  
...  

BACKGROUND The use of digital education in problem-based learning, or digital problem-based learning (DPBL), is increasingly employed in health professions education. DPBL includes purely digitally delivered as well as blended problem-based learning, wherein digital and face-to-face learning are combined. OBJECTIVE The aim of this review is to evaluate the effectiveness of DPBL in improving health professionals’ knowledge, skills, attitudes, and satisfaction. METHODS We used the gold-standard Cochrane methods to conduct a systematic review of randomized controlled trials (RCTs). We included studies that compared the effectiveness of DPBL with traditional learning methods or other forms of digital education in improving health professionals’ knowledge, skills, attitudes, and satisfaction. Two authors independently screened studies, extracted data, and assessed the risk of bias. We contacted study authors for additional information, if necessary. We used the random-effects model in the meta-analyses. RESULTS Nine RCTs involving 890 preregistration health professionals were included. Digital technology was mostly employed for presentation of problems. In three studies, PBL was delivered fully online. Digital technology modalities spanned online learning, offline learning, virtual reality, and virtual patients. The control groups consisted of traditional PBL and traditional learning. The pooled analysis of seven studies comparing the effect of DPBL and traditional PBL reported little or no difference in postintervention knowledge outcomes (standardized mean difference [SMD] 0.19, 95% CI 0.00-0.38). The pooled analysis of three studies comparing the effect of DPBL to traditional learning on postintervention knowledge outcomes favored DPBL (SMD 0.67, 95% CI 0.14-1.19). For skill development, the pooled analysis of two studies comparing DPBL to traditional PBL favored DPBL (SMD 0.30, 95% CI 0.07-0.54). Findings on attitudes and satisfaction outcomes were mixed. The included studies mostly had an unclear risk of bias. CONCLUSIONS Our findings suggest that DPBL is as effective as traditional PBL and more effective than traditional learning in improving knowledge. DPBL may be more effective than traditional learning or traditional PBL in improving skills. Further studies should evaluate the use of digital technology for the delivery of other PBL components as well as PBL overall.


2019 ◽  
Author(s):  
Bhone Myint Kyaw ◽  
Pawel Posadzki ◽  
Gerard Dunleavy ◽  
Monika Semwal ◽  
Ushashree Divakar ◽  
...  

BACKGROUND Medical schools in low- and middle-income countries are facing a shortage of staff, limited infrastructure, and restricted access to fast and reliable internet. Offline digital education may be an alternative solution for these issues, allowing medical students to learn at their own time and pace, without the need for a network connection. OBJECTIVE The primary objective of this systematic review was to assess the effectiveness of offline digital education compared with traditional learning or a different form of offline digital education such as CD-ROM or PowerPoint presentations in improving knowledge, skills, attitudes, and satisfaction of medical students. The secondary objective was to assess the cost-effectiveness of offline digital education, changes in its accessibility or availability, and its unintended/adverse effects on students. METHODS We carried out a systematic review of the literature by following the Cochrane methodology. We searched seven major electronic databases from January 1990 to August 2017 for randomized controlled trials (RCTs) or cluster RCTs. Two authors independently screened studies, extracted data, and assessed the risk of bias. We assessed the quality of evidence using the Grading of Recommendations, Assessment, Development, and Evaluations criteria. RESULTS We included 36 studies with 3325 medical students, of which 33 were RCTs and three were cluster RCTs. The interventions consisted of software programs, CD-ROMs, PowerPoint presentations, computer-based videos, and other computer-based interventions. The pooled estimate of 19 studies (1717 participants) showed no significant difference between offline digital education and traditional learning groups in terms of students’ postintervention knowledge scores (standardized mean difference=0.11, 95% CI –0.11 to 0.32; small effect size; low-quality evidence). Meta-analysis of four studies found that, compared with traditional learning, offline digital education improved medical students’ postintervention skills (standardized mean difference=1.05, 95% CI 0.15-1.95; large effect size; low-quality evidence). We are uncertain about the effects of offline digital education on students’ attitudes and satisfaction due to missing or incomplete outcome data. Only four studies estimated the costs of offline digital education, and none reported changes in accessibility or availability of such education or in the adverse effects. The risk of bias was predominantly high in more than half of the included studies. The overall quality of the evidence was low (for knowledge, skills, attitudes, and satisfaction) due to the study limitations and inconsistency across the studies. CONCLUSIONS Our findings suggest that offline digital education is as effective as traditional learning in terms of medical students’ knowledge and may be more effective than traditional learning in terms of medical students’ skills. However, there is a need to further investigate students’ attitudes and satisfaction with offline digital education as well as its cost-effectiveness, changes in its accessibility or availability, and any resulting unintended/adverse effects.


BMJ Open ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. e030672 ◽  
Author(s):  
Christina Elizabeth Johnson ◽  
Mihiri P Weerasuria ◽  
Jennifer L Keating

ObjectiveVerbal face-to-face feedback on clinical task performance is a fundamental component of health professions education. Experts argue that feedback is critical for performance improvement, but the evidence is limited. The aim of this systematic review was to investigate the effect of face-to-face verbal feedback from a health professional, compared with alternative or no feedback, on the objective workplace task performance of another health professional.DesignSystematic review and meta-analysis.MethodsWe searched the full holdings of Ovid MEDLINE, CENTRAL, Embase, CINAHL and PsycINFO up to 1 February 2019 and searched references of included studies. Two authors independently undertook study selection, data extraction and quality appraisal. Studies were included if they were randomised controlled trials investigating the effect of feedback, in which health professionals were randomised to individual verbal face-to-face feedback compared with no feedback or alternative feedback and available as full-text publications in English. The certainty of evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluations approach. For feedback compared with no feedback, outcome data from included studies were pooled using a random effects model.ResultsIn total, 26 trials met the inclusion criteria, involving 2307 participants. For the effect of verbal face-to-face feedback on performance compared with no feedback, when studies at high risk of bias were excluded, eight studies involving 392 health professionals were included in a meta-analysis: the standardised mean difference (SMD) was 0.7 (95% CI 0.37 to 1.03; p<0.001) in favour of feedback. The calculated SMD prediction interval was −0.06 to 1.46. For feedback compared with alternative feedback, studies could not be pooled due to substantial design and intervention heterogeneity. All included studies were summarised, and key factors likely to influence performance were identified including components within feedback interventions, instruction and practice opportunities.ConclusionsVerbal face-to-face feedback in the health professions may result in a moderate to large improvement in workplace task performance, compared with no feedback. However, the quality of evidence was low, primarily due to risk of bias and publication bias. Further research is needed. In particular, we found a lack of high-quality trials that clearly reported key components likely to influence performance.Trial registration numberCRD42017081796.


Author(s):  
Gerard Dunleavy ◽  
Charoula Konstantia Nikolaou ◽  
Sokratis Nifakos ◽  
Rifat Atun ◽  
Gloria Chun Yi Law ◽  
...  

BACKGROUND There is a pressing need to implement efficient and cost-effective training to address the worldwide shortage of health professionals. Mobile digital education (mLearning) has been mooted as a potential solution to increase the delivery of health professions education as it offers the opportunity for wide access at low cost and flexibility with the portability of mobile devices. To better inform policy making, we need to determine the effectiveness of mLearning. OBJECTIVE The primary objective of this review was to evaluate the effectiveness of mLearning interventions for delivering health professions education in terms of learners’ knowledge, skills, attitudes, and satisfaction. METHODS We performed a systematic review of the effectiveness of mLearning in health professions education using standard Cochrane methodology. We searched 7 major bibliographic databases from January 1990 to August 2017 and included randomized controlled trials (RCTs) or cluster RCTs. RESULTS A total of 29 studies, including 3175 learners, met the inclusion criteria. A total of 25 studies were RCTs and 4 were cluster RCTs. Interventions comprised tablet or smartphone apps, personal digital assistants, basic mobile phones, iPods, and Moving Picture Experts Group-1 audio layer 3 player devices to deliver learning content. A total of 20 studies assessed knowledge (n=2469) and compared mLearning or blended learning to traditional learning or another form of digital education. The pooled estimate of studies favored mLearning over traditional learning for knowledge (standardized mean difference [SMD]=0.43, 95% CI 0.05-0.80, N=11 studies, low-quality evidence). There was no difference between blended learning and traditional learning for knowledge (SMD=0.20, 95% CI –0.47 to 0.86, N=6 studies, low-quality evidence). A total of 14 studies assessed skills (n=1097) and compared mLearning or blended learning to traditional learning or another form of digital education. The pooled estimate of studies favored mLearning (SMD=1.12, 95% CI 0.56-1.69, N=5 studies, moderate quality evidence) and blended learning (SMD=1.06, 95% CI 0.09-2.03, N=7 studies, low-quality evidence) over traditional learning for skills. A total of 5 and 4 studies assessed attitudes (n=440) and satisfaction (n=327), respectively, with inconclusive findings reported for each outcome. The risk of bias was judged as high in 16 studies. CONCLUSIONS The evidence base suggests that mLearning is as effective as traditional learning or possibly more so. Although acknowledging the heterogeneity among the studies, this synthesis provides encouraging early evidence to strengthen efforts aimed at expanding health professions education using mobile devices in order to help tackle the global shortage of health professionals.


10.2196/12937 ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. e12937 ◽  
Author(s):  
Gerard Dunleavy ◽  
Charoula Konstantia Nikolaou ◽  
Sokratis Nifakos ◽  
Rifat Atun ◽  
Gloria Chun Yi Law ◽  
...  

Author(s):  
Pawel Posadzki ◽  
Malgorzata M Bala ◽  
Bhone Myint Kyaw ◽  
Monika Semwal ◽  
Ushashree Divakar ◽  
...  

BACKGROUND The shortage and disproportionate distribution of health care workers worldwide is further aggravated by the inadequacy of training programs, difficulties in implementing conventional curricula, deficiencies in learning infrastructure, or a lack of essential equipment. Offline digital education has the potential to improve the quality of health professions education. OBJECTIVE The primary objective of this systematic review was to evaluate the effectiveness of offline digital education compared with various controls in improving learners’ knowledge, skills, attitudes, satisfaction, and patient-related outcomes. The secondary objectives were (1) to assess the cost-effectiveness of the interventions and (2) to assess adverse effects of the interventions on patients and learners. METHODS We searched 7 electronic databases and 2 trial registries for randomized controlled trials published between January 1990 and August 2017. We used Cochrane systematic review methods. RESULTS A total of 27 trials involving 4618 individuals were included in this systematic review. Meta-analyses found that compared with no intervention, offline digital education (CD-ROM) may increase knowledge in nurses (standardized mean difference [SMD]=1.88; 95% CI 1.14 to 2.62; participants=300; studies=3; I2=80%; low certainty evidence). A meta-analysis of 2 studies found that compared with no intervention, the effects of offline digital education (computer-assisted training [CAT]) on nurses and physical therapists’ knowledge were uncertain (SMD 0.55; 95% CI –0.39 to 1.50; participants=64; I2=71%; very low certainty evidence). A meta-analysis of 2 studies found that compared with traditional learning, a PowerPoint presentation may improve the knowledge of patient care personnel and pharmacists (SMD 0.76; 95% CI 0.29 to 1.23; participants=167; I2=54%; low certainty evidence). A meta-analysis of 4 studies found that compared with traditional training, the effects of computer-assisted training on skills in community (mental health) therapists, nurses, and pharmacists were uncertain (SMD 0.45; 95% CI –0.35 to 1.25; participants=229; I2=88%; very low certainty evidence). A meta-analysis of 4 studies found that compared with traditional training, offline digital education may have little effect or no difference on satisfaction scores in nurses and mental health therapists (SMD –0.07; 95% CI –0.42 to 0.28, participants=232; I2=41%; low certainty evidence). A total of 2 studies found that offline digital education may have little or no effect on patient-centered outcomes when compared with blended learning. For skills and attitudes, the results were mixed and inconclusive. None of the studies reported adverse or unintended effects of the interventions. Only 1 study reported costs of interventions. The risk of bias was predominantly unclear and the certainty of the evidence ranged from low to very low. CONCLUSIONS There is some evidence to support the effectiveness of offline digital education in improving learners’ knowledge and insufficient quality and quantity evidence for the other outcomes. Future high-quality studies are needed to increase generalizability and inform use of this modality of education.


2019 ◽  
Author(s):  
Serena Brusamento ◽  
Bhone Myint Kyaw ◽  
Penny Whiting ◽  
Li Li ◽  
Lorainne Tudor Car

BACKGROUND Reducing childhood morbidity and mortality is challenging, particularly in countries with a shortage of qualified health care workers. Lack of trainers makes it difficult to provide the necessary continuing education in pediatrics for postregistration health professionals. Digital education, teaching and learning by means of digital technologies, has the potential to deliver medical education to a large audience while limiting the number of trainers needed. OBJECTIVE The goal of the research was to evaluate whether digital education can replace traditional learning to improve postregistration health professionals’ knowledge, skills, attitudes, and satisfaction and foster behavior change in the field of pediatrics. METHODS We completed a systematic review of the literature by following the Cochrane methodology. We searched 7 major electronic databases for articles published from January 1990 to August 2017. No language restrictions were applied. We independently selected studies, extracted data, and assessed risk of bias, and pairs of authors compared information. We contacted authors of studies for additional information if necessary. All pooled analyses were based on random effects models. We included individually or cluster randomized controlled trials that compared digital education with traditional learning, no intervention, or other forms of digital education. We assessed the quality of evidence using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) criteria. RESULTS Twenty studies (1382 participants) were included. Participants included pediatricians, physicians, nurses, and midwives. Digital education technologies were assessed including high-fidelity mannequins (6 studies), computer-based education (12 studies), mobile learning (1 study), and virtual reality (1 study). Most studies reported that digital education was either as effective as or more effective than the control intervention for outcomes including skill, knowledge, attitude, and satisfaction. High-fidelity mannequins were associated with higher postintervention skill scores compared with low-fidelity mannequins (standardized mean difference 0.62; 95% CI 0.17-1.06; moderate effect size, low-quality evidence). One study reported physician change in practicing behavior and found similar effects between offline plus online digital education and no intervention. The only study that assessed impact on patient outcome found no difference between intervention and control groups. None of the included studies reported adverse or untoward effects or economic outcomes of the digital education interventions. The risk of bias was mainly unclear or high. The quality of evidence was low due to study inconsistencies, limitations, or imprecision across the studies. CONCLUSIONS Digital education for postregistration health professions education in pediatrics is at least as effective as traditional learning and more effective than no learning. High-fidelity mannequins were found to be more effective at improving skills than traditional learning with low-fidelity mannequins. Computer-based offline/online digital education was better than no intervention for knowledge and skill outcomes and as good as traditional face-to-face learning. This review highlights evidence gaps calling for more methodologically rigorous randomized controlled trials on the topic.


Author(s):  
Francisco Vicens Blanes ◽  
Rosa Miró Bonet ◽  
Jesús Molina Mula

Context: Fever is a common symptom in children that nurses and pediatricians treat. Although it is a common sign in clinical practice, fever instills irrational fears in parents that health professionals share. Objective: To investigate whether doctors’ and nurses’ knowledge, perceptions, and attitudes toward fever influence how this sign is managed. Furthermore, it intends to evaluate whether educational programs increase knowledge and change attitudes and/or perceptions of nurses about children’s fever. Data Sources: A systematic review with meta-analysis was conducted with PRISMA international standards and the Cochrane recommendations. Study selection: Articles examining health professionals’ (doctors and/or nurses) knowledge, perceptions, and/or attitudes toward fever in children and the use of antipyretics were selected for the study. Data extraction: The qualitative analysis was carried out by classifying the articles according to the applied educational programs for nurses related to fever care for children that evaluated different outcomes to determine their efficacies. Results: For the qualitative synthesis, 41 articles were included, and 5 of these were taken in meta-analysis, which measured the effectiveness of educational programs for fever management in nurses. Limitations: All of the included studies generally had a high risk of bias. Conclusion: According to the evidence reviewed, nurses’ and physicians’ perceptions and attitudes regarding fever management in children indicate an overtreatment of this sign. We can give a recommendation grade of D on the use of educational programs to modify attitudes, perceptions, and knowledge about fever in children and improve clinical practice in nurses.


Author(s):  
Beatriz Brea-Gómez ◽  
Irene Torres-Sánchez ◽  
Araceli Ortiz-Rubio ◽  
Andrés Calvache-Mateo ◽  
Irene Cabrera-Martos ◽  
...  

Virtual reality (VR) can present advantages in the treatment of chronic low back pain. The objective of this systematic review and meta-analysis was to analyze the effectiveness of VR in chronic low back pain. This review was designed according to PRISMA and registered in PROSPERO (CRD42020222129). Four databases (PubMed, Cinahl, Scopus, Web of Science) were searched up to August 2021. Inclusion criteria were defined following PICOS recommendations. Methodological quality was assessed with the Downs and Black scale and the risk of bias with the Cochrane Risk of Bias Assessment Tool. Fourteen studies were included in the systematic review and eleven in the meta-analysis. Significant differences were found in favor of VR compared to no VR in pain intensity postintervention (11 trials; n = 569; SMD = −1.92; 95% CI = −2.73, −1.11; p < 0.00001) and followup (4 trials; n = 240; SDM = −6.34; 95% CI = −9.12, −3.56; p < 0.00001); and kinesiophobia postintervention (3 trials; n = 192; MD = −8.96; 95% CI = −17.52, −0.40; p = 0.04) and followup (2 trials; n = 149; MD = −12.04; 95% CI = −20.58, −3.49; p = 0.006). No significant differences were found in disability. In conclusion, VR can significantly reduce pain intensity and kinesiophobia in patients with chronic low back pain after the intervention and at followup. However, high heterogeneity exists and can influence the consistency of the results.


2019 ◽  
Author(s):  
Bhone Myint Kyaw ◽  
Lorainne Tudor Car ◽  
Louise Sandra van Galen ◽  
Michiel A van Agtmael ◽  
Céire E. Costelloe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document